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Abstract: This study applies phasor analysis to multispectral retinal images for automated
classification of healthy and diseased cases, achieving high accuracy with a ν-SVM classi-
fier and first harmonic for the entire retina and macular region. © 2025 The Author(s)

1. Introduction

Retinography provides a detailed, non-invasive view of the eye fundus, allowing ophthalmologists to examine key
structures such as blood vessels, the optic disc, and the macula. With advancements in machine and deep learning,
fundus imaging has become an essential tool for detecting abnormalities, diagnosing retinal diseases, and guiding
personalized treatment plans. For instance, a study [1] introduced a novel convolutional neural network model for
predicting diabetic retinopathy from fundus images, outperforming existing methods. Ordinary fundus cameras
typically use color sensors with three broad RGB bands to capture image data. In contrast, multispectral imaging
provides a more advanced approach by capturing information across a wider range of wavelengths, including those
beyond the visible (VIS) spectrum. These additional wavelengths, particularly in the near-infrared (NIR) range,
can penetrate deeper layers of the fundus, potentially revealing subtle changes and critical details.

Multispectral data exhibits moderate inter-band correlation, a characteristic that, while providing valuable spec-
tral information, also necessitates careful handling of potential redundancy. Phasor analysis [2] offers a promising
approach to address this challenge by mapping high-dimensional multispectral data onto a two-dimensional plane
while preserving essential information. This dimensionality reduction technique has proven effective in various
fields dealing with complex datasets. For instance, Parra et al. [3] successfully employed phasor analysis to inter-
pret high-dimensional embryo data from multispectral records.

This study investigates the application of phasor analysis to multispectral retinal images. By combining this
compact representation with machine learning algorithms, a screening tool has been developed to classify retinas
as healthy or diseased. The underlying hypothesis is that reducing redundant data through phasor analysis will
enhance the accuracy and reliability of retinal disease classification.

2. Materials

2.1. Spectral Retinograph

Multispectral images were acquired using a custom-built, area-scanning multispectral fundus camera, detailed in
[4]. The device features an optical system with an array of LEDs, each emitting light at a specific peak wavelength,
and two cameras: a high-resolution CMOS sensor (2048×2048 pixels, pixel size 6.5 µm, and 16-bit depth) that
captures 12 spectral images ranging from 416 to 955 nm, and a lower-resolution InGaAs camera (640 × 512
pixels, pixel size 20 µm, and 14-bit depth) that captures images in three bands from 1025 to 1213 nm. After post-
processing and cropping, images with 1757×1757 pixels and 386 x 386 pixels remain for the CMOS and InGaAs
cameras, respectively. In this study, the three NIR images from the InGaAs camera were excluded due to its lower
resolution and higher noise levels compared to the CMOS sensor.

2.2. Data Collection

A dataset of multispectral images from 102 retinas (50 diseased and 52 healthy cases which are 1224 images
in total) was used. The diseased retinas included conditions such as Age-related Macular Degeneration (AMD),
epiretinal membrane, and retinal detachment, among others. Images were collected at the Instituto de Microcirugia
Ocular (IMO - Miranza Group, Barcelona, Spain) and the Vision University Center (CUV) of the Universitat
Politècnica de Catalunya (Terrassa, Spain) [5].
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2.3. Phasor Analysis & Machine Learning

Phasor analysis was computed for each pixel in the spectral cube of a sample (x, y, λ ). This spectrum is represented
as a complex number with real and imaginary components (gx,y + isx,y) and processed using a discrete Fourier
transform [2]. Real and imaginary parts are defined as follows:
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where λ0 and λn represent the wavelengths of the first and last bands of the multispectral image, respectively.
n denotes the number of spectral channels in the spectral cube, ∆λ represents the bandwidth of a single channel,
and k refers to the harmonic number. To investigate the influence of harmonics, the first and second harmonics
were compared in this study. Once each fundus image is encoded into gx,y and sx,y components, an average value
was calculated for each sample, resulting in a single vector (gavg,savg) per image, referred to as the averaged
representation (Fig. 1).

Furthermore, two processing approaches were employed: one using the entire fundus image and the other fo-
cusing solely on the macular region. The dataset was processed to exclude images of diseases outside the macular
region. Nine diseased retinas were excluded because the pathology did not affect the macula, and to maintain a
balanced dataset, 11 healthy retinas were also removed. This resulted in a final dataset of 41 diseased, and 41
healthy cases. The analysis focused on the macular region along with a small surrounding area. While the exact
size varied slightly across images, the region of interest averaged approximately 400×400 pixels.

The averaged phasor representation served as input for four different classification algorithms to distinguish
between healthy and diseased retinas: Nearest Centroid (NC), Gaussian Naive Bayes (GNB), Support Vector
Machine (SVM), and ν-SVM [6].

Fig. 1. From left to right: multispectral fundus images are mapped into the phasor plots for a partic-
ular harmonic. The plots show all pixels of a spectral cube, i.e., a sample. These are then condensed
into a single average phasor value, which serves as the input for classification algorithms, ultimately
distinguishing between healthy and diseased retinas.

3. Results

A graphical comparison between gavg and savg for the 102 retinas analyzed is depicted in Fig. 2. Only averaged
data for the entire fundus and the macular region are shown for both the first and second harmonic components.
Table 1 shows the performance metrics in classifying between healthy and diseased retinas evaluated using sev-
eral algorithms. Our findings indicate that the combination of phasor analysis with machine learning algorithms,

Fig. 2. Average representations for a) entire retina on 1st harmonic, b) entire retina on 2nd harmonic,
c) macular region on 1st harmonic, d) macular region on 2nd harmonic

specifically ν-SVM, can effectively distinguish between healthy and diseased retinas. The best results are achieved
using the first harmonic, regardless of whether the analysis covers the entire retina or focuses only on the macula.
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Table 1. Performance of the classification algorithms using the entire retina with 1st and 2nd har-
monics. Overall Accuracy (OA), Balanced Accuracy (BA), Specificity, Sensitivity, and F1-score.
The numbers in bold are the best results.

Retina Section Method Harmonic OA BA F1-Score Specificity Sensitivity
Entire NC 1st 0.77 0.76 0.73 0.86 0.67

2nd 0.66 0.66 0.66 0.62 0.70
GNB 1st 0.74 0.75 0.74 0.73 0.76

2nd 0.64 0.65 0.67 0.56 0.74
SVM 1st 0.77 0.77 0.74 0.84 0.70

2nd 0.67 0.67 0.69 0.56 0.78
ν-SVM 1st 0.78 0.78 0.77 0.78 0.78

2nd 0.69 0.69 0.71 0.58 0.80
Macula NC 1st 0.70 0.71 0.76 0.76 0.65

2nd 0.61 0.62 0.60 0.67 0.57
GNB 1st 0.70 0.71 0.69 0.75 0.67

2nd 0.66 0.67 0.66 0.70 0.64
SVM 1st 0.74 0.75 0.74 0.78 0.71

2nd 0.59 0.60 0.61 0.57 0.63
ν-SVM 1st 0.77 0.78 0.76 0.84 0.72

2nd 0.66 0.67 0.67 0.67 0.67

4. Conclusion

This study has demonstrated the potential of phasor analysis for classifying healthy and diseased retinas using
multispectral retinal images. By reducing the dimensionality of the multispectral data, phasor analysis simplifies
the information while retaining crucial diagnostic features.

Future research will explore the incorporation of multiple harmonics to potentially extract even more nuanced
spectral information. Additionally, analysis will be tailored to specific image regions affected by disease, such as
the optic disc, macula, or vessels. Furthermore, the application of deep learning architectures for classification will
be investigated, which may offer improved performance and the ability to automatically learn complex features
from the phasor representations. Ultimately, the fusion of multispectral data with other imaging modalities, such
as Optical Coherence Tomography (OCT), is also envisioned.
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