
Explainable Estimation of Blood Volume 
Pulse Signals from Video Sequences 

Using a Combination of Deep Learning 
Models and Signal Processing Methods 

Milena Sobotka(B), Kamil Kopryk, Muhammad Usman, and Jacek Rumiński 

Department of Biomedical Engineering, Gdansk University of Technology, FETI, 
80-233 Gdansk, Poland 

milena.sobotka@pg.edu.pl 

http://www.pg.edu.pl 

Abstract. This study evaluates the application of Gradient-weighted 
Class Activation Mapping (Grad-CAM) to identify key image regions for 
enhancing pulse wave estimation using traditional signal analysis meth-
ods. The approach assumes that Grad-CAM masking enables the selec-
tion of relevant image areas, improving the Signal to Noise Ratio (SNR). 
Experiments were conducted on the PURE dataset using the TS-CAN 
model and rPPG-Toolbox. Grad-CAM maps identified facial regions 
most influential for model prediction, allowing the exclusion of areas 
not contributing to accurate estimation. The study also explored differ-
ent temporal window sizes and their impact on signal quality. Method 
evaluation included SNRraw, SNRmax, SNRsum, and Hjorth descriptors. 
Results confirmed that Grad-CAM masking enhances rPPG signal qual-
ity, enabling more precise heart rate estimation. Statistical analysis vali-
dated the significance of the findings, highlighting the potential of inter-
pretable deep learning methods in signal analysis. 

Keywords: blood volume pulse · remote photoplethysmography · 
signal processing · explainable AI 

1 Introduction 

Technological advancements have enabled the development of non-invasive meth-
ods for monitoring physiological parameters, among which remote photoplethys-
mography (rPPG) plays a crucial role. This technique utilizes subtle changes in 
skin color, captured in video recordings, to analyze pulsatile blood flow, allowing 
for the estimation of heart rate (HR) and blood volume pulse (BVP) [ 1]. These 
variations result from small fluctuations in blood volume during the cardiac 
cycle, which influence the amount of light absorbed by blood vessels and, con-
sequently, cause alterations in skin intensity values. Unlike traditional contact-
based methods, such as photoplethysmography (PPG), rPPG eliminates the 
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need for attached sensors, significantly enhancing user comfort and enabling 
continuous, remote monitoring. As a result, it finds wide application in home-
based health monitoring systems. Despite its advantages, rPPG still encounters 
challenges related to physiological factors influencing BVP signal measurement. 
One of the key obstacles is the spatial variability of the vascular system and the 
uneven distribution of signal intensity across different regions of interest (ROI) 
on the face. Furthermore, the low amplitude of these signals makes them par-
ticularly vulnerable to motion artifacts and lighting fluctuations, often causing 
noise levels to exceed the intensity of the useful signal. In response to these 
challenges, various filtering algorithms and noise reduction techniques have been 
developed [ 2– 4]. Among the most commonly used methods are those based on 
independent component analysis (ICA), which allow for the decomposition of 
RGB signals into independent components, from which those containing rel-
evant heart rate information are selected. Alternatively, models are employed 
where RGB channels are represented as a linear combination of BVP compo-
nents and noise, allowing for their separation based on prior assumptions. Deep 
learning-based methods [ 5, 6] have achieved significant importance in analyz-
ing video data to extract physiological parameters such as HR and BVP. Once 
trained on large datasets, these models can effectively predict HR components, 
thereby improving measurement accuracy. Accurate monitoring of vital parame-
ters requires advanced image processing techniques combined with deep learning 
methods, which enable improved measurement precision, especially under chal-
lenging environmental conditions. 

The traditional signal processing based methods used to estimate the pulse 
wave signal are fully explainable. However, usually the fixed masks for face, fore-
head or cheeks produce low quality signals. One of the key challenges in apply-
ing deep learning to medical contexts is its limited interpretability. Although 
these models can efficiently extract high-quality signals from input video, they 
often function as black boxes, raising concerns among medical professionals. In 
response to these issues, the field of Explainable Artificial Intelligence (XAI) 
is being developed, focusing on creating interpretable models while maintain-
ing high predictive accuracy. One widely used solution is Grad-CAM [ 7], which 
allows for the visualization of image areas with the most significant impact on 
the model’s decision. Grad-CAM has found applications in various aspects of 
facial analysis [ 8, 9], including identity recognition, emotional expression analy-
sis, attribute classification, and medical diagnostics [ 10,11]. 

This paper aims to combine both techniques by proposing a methodology 
that uses Grad-CAM to identify key image regions, enhancing pulse wave esti-
mation accuracy through traditional signal analysis. The main assumption is 
that Grad-CAM-based masking enables the selection of the most relevant image 
areas, thereby increasing the SNR compared to analyzing entire images. To eval-
uate this approach, the Temporal Shift Convolutional Attention Network (TS-
CAN) [ 17] was assessed using the rPPG-Toolbox [ 16] on the Pulse Rate Detection 
Dataset (PURE) [ 24]. Grad-CAM heatmaps were then generated to determine 
which facial regions had the most significant influence on the model’s predic-
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tions, allowing for the identification of the most critical areas for rPPG signal 
extraction, and using these heatmaps, a binary mask was created. Additionally, 
a windowed approach to mask generation was introduced, incorporating varying 
numbers of neighboring frames in the computation of Grad-CAM heatmaps, and 
its impact on heart rate estimation accuracy was analyzed. The effectiveness of 
the proposed method was assessed using various metrics, including the SNRraw, 
SNRmax, SNRsum, and Hjorth descriptors. Moreover, statistical analyses were 
conducted to determine the significance of the results and to assess the influence 
of the applied methods on signal quality. 

The rest of the paper is structured as follows. Section 2 provides a review of 
existing rPPG methodologies, with a particular focus on the impact of lighting 
conditions, ROI selection, and the application of deep neural networks in heart 
rate estimation. Section 3 describes the proposed methodology, including the 
implementation of Grad-CAM-based masking and the applied signal analysis 
techniques. Section 4 presents the experimental results and statistical analysis, 
followed by a discussion of the findings in Sect. 5. Finally, Sect. 6 concludes the 
paper by discussing potential improvements in rPPG signal acquisition. 

2 Related Work 

In recent years, rPPG has gained recognition as a progressive method for contact-
less monitoring of vital parameters. Research in this field focuses on identifying 
factors that affect measurement accuracy and improving signal processing meth-
ods. The study [ 12] analyzed the impact of various lighting conditions, frame 
rates, and video compression on the effectiveness of heart rate detection using 
videoplethysmography. It was shown that different ambient light sources signif-
icantly influence the quality of pulse estimation in rPPG, and optimal lighting 
conditions, along with proper camera settings, are crucial for achieving accurate 
measurements. The findings also emphasize the necessity of minimizing distur-
bances caused by video compression and further developing rPPG technology 
to address the challenges of real-world environmental conditions. The study [ 3] 
demonstrated the feasibility of measuring pulse rate using a webcam by analyz-
ing color changes in specific facial regions, such as the forehead. The authors 
proposed focusing on selected areas of the face to enhance measurement accu-
racy and reduce the impact of disturbances. The study highlighted the effec-
tiveness of the Principal Component Analysis (PCA) method in extracting the 
pulse signal while ensuring high computational efficiency, making it suitable 
for real-time applications. It was also noted that selecting smaller ROI helps 
minimize motion artifacts and provides reliable measurements under controlled 
lighting conditions. Further research [ 13] explored the use of normalized and 
tracked facial regions, such as the cheeks and nose, to improve signal stability 
and enhance the robustness of rPPG measurements. Recent advancements in 
rPPG research focus on leveraging deep neural networks to enhance the preci-
sion and reliability of pulse signal analysis. The study [ 14] demonstrated that the 
application of DNNs enables not only the classification of PPG signals based on
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their suitability for heart rate estimation but also the automatic identification 
of facial regions that provide the most stable measurements. Additionally, signal 
quality analysis, incorporating parameters such as SNR and Normalized Peak 
Energy (NPE), further improves classification accuracy and reduces the likeli-
hood of erroneous readings. Unlike traditional methods such as ICA and PCA, 
which may produce false-positive results in the presence of noise, deep learning 
models demonstrate greater adaptability to varying lighting conditions while 
effectively minimizing motion artifacts. Furthermore, the use of DNN regression 
models allows for direct heart rate estimation without requiring complex fil-
tering techniques, making this approach particularly promising for telemedicine 
applications and intelligent health monitoring systems. 

One of the key aspects of modern rPPG methods is the utilization of atten-
tion mechanisms and deep learning architectures, as demonstrated in the study 
by [ 15]. The introduced MAR-rPPG method focuses on improving the preci-
sion of ROI localization and enhancing motion robustness. The implementation 
of masked attention enables increased semantic consistency in attention maps 
across consecutive video frames, while the masking technique prevents the model 
from overly relying on imprecisely determined ROIs. Additionally, the integra-
tion of the Enhanced rPPG Expert Aggregation (EREA) architecture allows for 
a dynamic analysis of various facial regions and selectively directs the model’s 
attention to the most relevant features of the rPPG signal. The findings indi-
cate that combining attention mechanisms with the elimination of incorrectly 
designated ROIs significantly enhances rPPG’s resistance to motion artifacts, 
thereby improving the stability and accuracy of heart rate estimation. A com-
parable approach was adopted in [ 16], which introduced rPPG-Toolbox, a tool 
designed to assess and compare the effectiveness of different rPPG methods. 
The authors focused on deep learning models that employ convolutional neural 
networks and attention mechanisms for signal analysis. 

Among the discussed architectures, TS-CAN was highlighted for its use 
of temporal shifts in signal analysis [ 17], PhysNet for its reliance on three-
dimensional convolutional networks [ 18], DeepPhys for integrating attention 
mechanisms to select key features [ 19], and PhysFormer, which incorporates 
transformers for spatiotemporal analysis [ 20]. The application of these models 
enables more effective suppression of motion artifacts and improves heart rate 
estimation accuracy. Notably, the authors emphasize that the standardization 
of training processes and the analysis of signal quality impact on predictive per-
formance contribute to the optimization of deep learning methods in rPPG. A 
significant feature of the rPPG-Toolbox is also its ability to integrate model 
interpretability mechanisms, such as Grad-CAM, which facilitates the identifi-
cation of facial regions crucial for heart rate prediction [ 7]. 

An essential aspect of rPPG analysis is assessing signal quality, as it directly 
impacts the accuracy of heart rate estimation. The quality measure of rPPG 
signals is often represented by the value of the SNR. In many papers, the SNR 
quality measure for rPPG is defined as [ 21]:
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SN R = 10log10

�240 
f =30 (Uw(f )Sf )2

�240 
f =30 ((1 − Uw(f))Sf )2 
, (1) 

where f denotes the frequency in bpm, S(f) represents the spectrum of the 
extracted signal, Uw(f) denotes the binary template window with the window 
size represented by w: 

Uw(f) =  

 
 

 

1 fPR  − w 2 ≤ f ≤ fPR  + w 2 
1 2fPR  − w 2 ≤ f ≤ 2fPR  + w 2 
0 otherwise 

(2) 

and fPR  represents the true pulse rate value. The values f = 30 and f = 240 repre-
sent the lower and upper limits for possible pulse rates (0.5 Hz, 4 Hz). However, 
these frequencies are defined differently in some other papers (e.g., [ 22]). Using 
such a template window is a good proposition, assuming we know the reference 
value of the pulse rate. Some methods [ 23] propose extracting the pulse signal 
from image sequences using the SNR measure as an objective function during the 
training of the deep neural networks. This is a very interesting approach. How-
ever, there is uncertainty about whether false positive signals could be extracted 
to fulfill that criterion. The Hjorth descriptors were originally proposed for on-
line analysis of EEG signals [ 25]. They are often used to represent the signal 
dynamics and purity in reference to the sinus function. These parameters will 
be used also in this study. 

3 Method  

In the following section, we provide details about the PURE dataset, including 
the experimental conditions, categorization of motion scenarios performed by 
participants, and the data selection process. We also describe the methodology 
for generating Grad-CAM masks and calculating signal quality metrics, such as 
SNR, Hjorth descriptors, which were used in the analysis. 

3.1 Dataset 

For the purpose of this study, data from the PURE dataset were utilized [ 24], 
including recordings of participants performing controlled head movements in 
front of a camera, while both facial images and reference heart rate measure-
ments were captured. The participants were positioned approximately 1.1 m from 
the camera under natural daylight conditions. Each participant (01–10) engaged 
in six distinct scenarios, including: (1) remaining motionless, (2) speaking, hori-
zontal head movements at different speeds – (3) slow and (4) fast translation, as 
well as looking at designated points around the camera, which induced (5) small 
and (6) medium head rotations ranging from 20◦ to 35◦. A file naming conven-
tion AA−BB was adopted, where AA represented the participant index and BB 
denoted the scenario number, e.g., 01 − 01. During the recordings, participants’
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heart rates ranged from 42 BPM to 148 BPM, with all measurements obtained 
in a resting state. Due to issues with face detection during data preprocessing 
for TS-CAN inference and face mask generation, the sample for participant 05 
and sample 06 − 02 were removed from the analysis. 

3.2 Explainability Analysis of the TS-CAN Model 

The TS-CAN model was trained on the PURE dataset for contactless mon-
itoring of physiological parameters, such as heart rate and respiratory rate, 
through video analysis. A fundamental component, the temporal shift module, 
efficiently models dynamic signal variations while maintaining low computa-
tional costs. This enables real-time operation on devices with limited process-
ing power. Its architecture consists of two primary branches: the appearance 
branch, which detects subtle skin tone variations indicative of blood flow, and 
the motion branch, which captures micro-movements related to respiration and 
cardiac activity. Additionally, the attention module enhances signal to noise sep-
aration by focusing on the most relevant facial regions. The use of multi-task 
learning allows for the simultaneous estimation of heart rate and respiratory 
rate, optimizing computational efficiency and improving model accuracy. 

The training process was conducted using rPPG-Toolbox, an open-source 
framework dedicated to rPPG signal analysis. The model was trained for 40 
epochs with a batch size of 4 and a learning rate of 9 · 10−3, achieving the best 
performance in epoch 34. Data from the PURE dataset underwent preprocessing, 
including DiffNormalization and Standardization. During initial processing, the 
facial region was detected in the first frame of each video, cropped, and expanded 
by 50% around the detected area. These regions were then resized to 72× 72 px 
and used in both training and inference to generate Grad-CAM visualizations. 
In the conducted experiments, two masks were introduced: 1) mask m1, which  
defines a rectangular facial region, and 2) mask m2, derived from Grad-CAM 
heatmaps. First, using the MediaPipe detector and input frames in the RGB 
domain, employed for Grad-CAM computation, the facial region was identified, 
and a rectangular binary mask (m1) was generated. Subsequently, Grad-CAM 
maps were computed for the Attention Mask 2 layer, normalized for each frame, 
and converted into binary masks using a 0.5 threshold. To enhance stability 
and facilitate comparative analysis, a windowed averaging approach was applied, 
where consecutive Grad-CAM maps were averaged to construct m2. The window 
size was set to 1, 3, 5, 9, 13, 17, 21, 25, 29, and 33. For example, a mask size 
of 5 indicates that the Grad-CAM mask for a given frame is calculated using 
the two preceding, the target, and the two subsequent frames. When data from 
Attention Mask 2 were unavailable, the window size was progressively increased 
until the missing information was retrieved. The signal was computed based on 
the mean intensity of the green channel from input frames, multiplied by both 
masks. This resulted in two signal variants: 
– s1, where only the facial mask was applied, 
– s2, where both the Grad-CAM mask and the facial mask were applied simul-

taneously.
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Fig. 1. Example of a single frame with different applied binary masks 

Due to substantial variations in facial region size and the number of unmasked 
pixels across frames, masked pixels were excluded from signal computation. This 
prevented their influence on the computed averages, ensuring a more reliable 
signal comparison (Fig. 1). 

3.3 Signal Quality Assessment 

The next stage of the analysis involved computing SN Rraw, SN Rsum and 
SN Rmax on the two extracted signals: s1 and s2. As part of the computation 
of the SN Rraw for the entire signal spectrum, a high-pass Butterworth filter 
was first applied with a cutoff frequency of 0.2 Hz, as lower frequencies were 
considered as baseline drift. Subsequently, a discrete Fourier transform (FFT) 
was performed on the filtered signal, resulting in the computed frequency spec-
trum X(k), which was then analyzed in terms of its absolute value |X(k)|. The  
frequency range of [0.7,4.0] Hz was considered as the main component of the 
analyzed pulse signal, while frequencies outside this range were classified as a 
noise. The signal power, was determined by summing the squared values within 
the specified frequency range. Similarly, the noise power, was defined as the sum 
of squared values for frequencies outside the [0.7,4.0] Hz range. Finally, SN Rraw 
was defined using the (Eq. 1) formula, with the values fmin = 42 and fmax = 240 
(beats per minute corresponding to 0.7–4 Hz) and Uwi(f ) (Eq.  3), where Uwi(f) 
denotes the binary template window with the window size represented by w for 
the particular position of the template window i: 

Uw(f) =

�
1 f − w 

2 
≤ f ≤ f + w 

2 

0 otherwise 
(3) 

SN Rsum (Eq. 4) and  SN Rmax (Eq. 5) measures refer to the maximum peak 
in the spectrum (describing the “energy” of the dominating frequency) without 
reference to the unknown, ground-truth pulse rate value. The values of these 
measures reflect how much some frequency (within the range of e.g., ±5 bpm, 
if w = 3) dominates in the spectrum, even if this fundamental frequency is not 
related to the pulse wave. This approach uses only information within measured 
signal in the potentially useful bandwidth, without unknown pulse rate (Eq. 1).
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In our case, we assumed a frequency range of 0.7–4.0 Hz and a window size of 
15 for the calculations. 

SN Rsum = 10log10 
N −w�

i=1

�240 
f =42 (Uwi(f)S

2 
f )

2

�240 
f =42 ((1 − Uwi(f))S2 f )2 
, (4) 

SN Rmax = 10log10(maxN −w i=1

�240 
f =42 (Uwi(f)S

2 
f )

2

�240 
f =42 ((1 − Uwi(f ))S2 f )2 

) (5) 

Activity, mobility, and complexity Hjorth descriptors (Eq. 6) were adapted 
for the input signal y as: 

activity = w0 = var(y), mobility =
�
w2 
w0 

=

	
var( ẏ) 
var(y) 
, 

complexity =
�
w4 
w0 

=

	
var(ÿ) 
var(y) 
, 

(6) 

where ẏ and ÿ are the first and second derivative of the signal y. In the case of a 
discrete-time signal, activity is defined by the signal’s variance, representing its 
total energy, while mobility describes the dominant frequency. The complexity 
(different than proposed by Hjorth) measures the high dynamics of the signal. 
For the analyzed domain of the signal these descriptors have lower values when 
variance of noise is low. 

4 Results 

The impact of different mask types and window sizes on signal quality was evalu-
ated. The analysis was focused on computed SNR metrics and Hjorth descriptors, 
providing insights into performance differences between masks m1 and m2. The  
results were summarized in tables and figures, with Fig. 2 illustrating frames 
where the proposed Grad-CAM masks were applied. 

Fig. 2. Sequence of frames with extracted m2 masks
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4.1 Signal to Noise Ratio Analysis 

The calculated SNR metrics for different mask types were presented in Table 1, 
which reported values for SNRraw, SNRmax, and SNRsum. The table included 
the differences between these metrics for m1 and m2. 

Table 1. Comparison of SNRraw, SNRmax, and SNRsum metrics 

m1 m2 m2 - m1 

SNRraw SNRmax SNRsum SNRraw SNRmax SNRsum ∆SNRraw ∆SNRmax 

1 0.1118 −0.9131 9.368 4.221 8.726 17.57 4.109 9.639 
2 −0.6648 −8.272 4.549 −0.3398 −4.19 8.115 0.325 4.082 
3 −2.592 −6.131 5.625 −0.1757 −2.208 8.505 2.416 3.923 
4 −2.107 −5.653 5.975 0.1769 −6.374 5.749 2.284 −0.721 
5 −5.082 −4.627 6.259 −1.886 1.646 11.91 3.196 6.273 
6 −4.781 −5.7 5.963 −3.247 1.627 11.39 1.534 7.327 

To further analyze the impact of mask types, Table 2 provided comparative 
results across all categories, incorporating Hjorth descriptors and their differ-
ences for both masks. 

Table 2. Comparison of Hjorth descriptors: activity, mobility, and complexity 

m1 m2 m2 - m1 

activity mobility complexity activity mobility complexity ∆activity ∆mobility ∆complexity 
1 0.0001217 0.8115 1.334 4.277e-05 0.4664 0.6836 −7.4e-05 −0.3451 −0.6504 
2 0.000247 0.612 0.9224 0.0001148 0.44 0.6078 −0.0001322 −0.172 −0.3146 
3 0.001994 0.5858 0.9133 0.000993 0.5118 0.7366 −0.001001 −0.074 −0.1767 
4 0.0004462 0.5629 0.8821 0.000166 0.5985 0.8774 −0.0002802 0.0356 −0.0047 
5 0.0003806 0.4999 0.8056 8.876e-05 0.4134 0.6102 −0.0002918 −0.0865 −0.1954 
6 0.0004796 0.4977 0.7921 0.0001968 0.3765 0.5532 −0.0002828 −0.1212 −0.2389 

Table 3 summarized the statistical tests used to compare signals derived from 
m1 and m2, including the Mann-Whitney test (MW p-value and Rank Biserial 
Correlation), as well as the Shapiro-Wilk test results for groups G1 and  G2. 
Additionally, the t-test, applicable under normal distribution assumptions, was 
included.
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Table 3. Comparison of statistical metrics for SNRraw and SNRmax 

SNRraw SNRmax 

MW p-val MW RBC SW G1 SW G2 TT p-val MW p-val MW RBC SW G1 SW G2 TT p-val 
1 0.0047 −0.8025 0.7928 0.9631 0.0012 0.0081 −0.7531 0.0293 0.2293 0.0044 
2 0.8785 −0.0625 0.4058 0.2693 0.6107 0.2345 −0.3750 0.0453 0.3495 0.1353 
3 0.0273 −0.6296 0.7643 0.2208 0.0274 0.0774 −0.5062 0.0282 0.5354 0.1322 
4 0.0217 −0.6543 0.8759 0.7173 0.0164 0.8598 0.0617 0.3016 0.7395 0.7526 
5 0.0423 −0.5802 0.2820 0.1148 0.0232 0.0171 −0.6790 0.1524 0.2598 0.0140 
6 0.2893 −0.3086 0.2879 0.2378 0.2007 0.0020 −0.8765 0.1512 0.4680 0.0005 

4.2 Window Size Comparison 

The effect of window size on SNRraw and SNRmax in the computation of the 
Grad-CAM binary mask was examined. Figures 3 and 4 displayed SNRraw for 
m2 alongside baseline values for m1. Figures 5 and 6 illustrated the differences 
in SNRraw and SNRmax, highlighting the impact of varying the window size on 
signal quality. 

Fig. 3. Comparison of SNRraw for two masks across different window sizes
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Fig. 4. Comparison of SNRmax for two masks across different window sizes 

Fig. 5. Comparison of SNRraw(m2) - SNRraw(m1) across different window sizes
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Fig. 6. Comparison of SNRmax(m2) - SNRmax(m1) across different window sizes 

5 Discussion 

The largest improvements in SNRraw with Grad-CAM-based masking were 
observed in category 1 (no movement), where the SNR increased by +4.109, 
and in category 5 (small head rotations), with an increase of +3.196. Notable 
increases occurred in categories 3 (slow head movement, +2.416), 4 (rapid head 
movement, +2.284), and 6 (large head rotations, +1.534). Category 2 (speaking 
activity) showed minimal improvement (+0.325), suggesting that speech artifacts 
persist despite masking. SNRmax improved notably, with the largest increase in 
categories 1 (+9.639), 6 (+7.327) and 5 (+6.273). Moderate improvements were 
seen in categories 2 (+4.082) and 3 (+3.923), whereas category 4 showed a slight 
decline (−0.721), indicating potential distortions under fast motion using Grad-
CAM masking. In our Hjorth descriptors implementation, all differences between 
masks m2 and m1 were negative, indicating reduced noise in the obtained signal, 
except for a slight mobility increase in one instance of category 4. Considering 
the temporal window size of the attention mask in relation to the increase in 
SNRraw and SNRmax, the findings indicate that SNRraw exhibits the greatest 
improvement in category 1 (+0.9840), while in categories 2, 3, and 5, the dif-
ferences remain minimal, indicating that the expansion of the window led to 
only a slight improvement in signal enhancement. In contrast, SNRmax shows 
a significantly greater improvement, particularly in categories 1, 2, 3, 4 and 5, 
where differences exceed +2, suggesting that larger window sizes substantially 
improved signal quality in the 0.7–4.0 Hz band. 

Based on the Mann-Whitney and Shapiro-Wilk tests, significant differences 
between the analyzed groups were observed in certain categories, with both 
statistical significance (MW p-value) and effect size (MW RBC) playing a crucial 
role in result interpretation. For SNRraw, significant differences were found in
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categories 1, 3, 4, and 5, as confirmed by the low MW p-values (MW p-val < 0.05) 
and large effect sizes (|MW RBC| ≥  0.5), confirming substantial differences 
between groups. Category 6, despite demonstrating a moderate effect size (0.3 
≤ |MW RBC| < 0.5), did not reach statistical significance in the Mann-Whitney 
test, suggesting that the observed differences may be attributed to random data 
fluctuations rather than systematic variance. Meanwhile, category 2 exhibited 
neither statistical significance (MW p-val = 0.8785) nor a meaningful effect 
size (|MW RBC| < 0.3). For SNRmax, significant differences were observed in 
categories 1, 5, and 6, where (MW p-val < 0.05) and effect sizes were large 
(|MW RBC| ≥  0.5), indicating a strong distinction between the s1 and s2 signals. 
Category 2, despite reaching a moderate effect size (0.3 ≤ |MW RBC| < 0.5), did 
not demonstrate statistical significance, while category 4 showed both a small 
effect size and no statistical significance. Category 3 exhibited a large effect size 
(|MW RBC| = 0.5062), but did not reach statistical significance. 

This preliminary study has many limitations. First, it uses only one public 
dataset. Many other datasets can be analyzed in the future. Second, only one 
deep-learning model was used to extract Grad-CAM arrays and calculate masks 
used in this study. The TS-CAN model is very effective; however, more models 
have been proposed. Third, in our study, we considered only the signal from 
the green channel, whereas many traditional techniques, such as ICA and PCA, 
can significantly enhance signal quality by utilizing all three available channels. 
Nevertheless, this study presents a case showing how we can extract regions of a 
face that contribute most to the final, estimated BVP signal. It can be extended 
to propose a fully automated method to extract BVP-related face regions instead 
of fixed ROIs like the face area, forehead, cheeks, etc. 

6 Conclusion 

The performed analyses indicated that the application of Grad-CAM-based 
masking leads to a significant improvement in the quality of the rPPG signal. In 
addition to enhancing signal quality, the application of a binary mask derived 
from Grad-CAM, generated using the TS-CAN model for rPPG estimation, pro-
vides insight into the model’s decision-making process, demonstrating that the 
identified regions contribute to the accurate extraction of blood volume pulse 
signals. In the majority of the analyzed scenarios, the SNRraw and SNRmax val-
ues were significantly higher when using the Grad-CAM mask (m2) compared to 
the reference face mask (m1). Grad-CAM based masking provides the greatest 
benefit in stationary conditions and controlled movements. Moderate improve-
ments occur for slow movements and speech, while fast head movements see no 
advantage or even slight degradation in SNRmax. Large head rotations benefit 
moderately but remain affected by motion artifacts. The analysis of the atten-
tion mask window size revealed that SNRraw improves only marginally, while 
SNRmax increases by over 3.2 dB in categories 2, 3, and 4. The proposed app-
roach indicates that integrating an attention module which leverages multiple 
temporal windows could further enhance the TS-CAN model.
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