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Abstract. Accurate and early image analysis is crucial for proper diag-
nosis and treatment. Convolutional neural networks (CNNs) have the
ability to precisely classify and segment the affected wound areas, which
has revolutionized biomedical imaging for automatic detection and diag-
nosis. However, CNN models often face challenges like generalization and
overfitting issues due to limited wound image data. In addition, RGB
images are computationally intensive. They may prompt the model to
focus on irrelevant features, such as color variations, instead of the most
important ones, like silhouettes, ultimately leading the model to the over-
fitting problem. This study investigates the influence of color on ulcer
semantic segmentation. We explore different color-to-grayscale conver-
sion techniques to study the learning behavior of the CNN model. Tra-
ditionally, image conversion from an RGB color space to grayscale uses
fixed transformation parameters, e.g., YUV color model weights, which
are standardized for human observers. The YUV color model separates
luminance (Y) from chrominance (U and V), allowing efficient brightness
and color information representation. However, machine-based process-
ing does not require ‘secing’ the content but focuses on extracting the
essential features for model training, data augmentation, or future design
of task-specific sensors. We designed a universal model architecture to
analyze the learning procedure’s ability to learn task-specific weights for
color-to-grayscale conversion. The experiment results show how grayscale
images based on learned weights could be used in task-specific semantic
segmentation compared to color images and grayscale images obtained
using traditional conversion techniques. The grayscale images based on
learned weights are computationally efficient, and simplified feature rep-
resentation helps the model emphasize the most relevant attributes while
suppressing irrelevant ones. The source code is available on [1].
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1 Introduction
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The amount of money spent on wound care is increasing in the healthcare sector.
Approximately 8 million people were injured in 2018, and Medicare costs (USA)
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were estimated to be between $28.1 billion and $96.8 billion [2]. Wounds that do
not heal properly or where the healing process does not restore anatomical and
functional integrity after three months are considered chronic wounds. Time is
of the essence; the longer a wound is allowed to deteriorate, the more difficult
it is to heal, and early diagnosis is the most effective means of reducing wound
care costs [3,4].

Chronic wounds are more likely to form in persons who are obese or have dia-
betes. Diabetes affects 34.2 million Americans and 463 million people globally,
and by 2030, this number is expected to increase by 25% [5]. Diabetic foot ulcers
(DFUs) are a relatively common form of chronic ulcers on the lower extremi-
ties. Regardless of the presence of peripheral vascular disease, neuropathy can
diminish or eliminate the sensation of pain in the foot, thus often resulting in
diabetic foot ulcers (DFUs), ranging in depth from shallow to deep. An increased
mortality rate may result from these wounds or ulcers if they are not adequately
managed [6,7].

For appropriate wound care and management, early and precise assessment
of the severity of foot wounds can be crucial. Accurate tissue analysis and
wound area assessment are essential for proper treatment and diagnosis. Wound
attributes such as area, volume, and stage can be identified with the help of
precise wound image segmentation [8]. In turn, these characteristics can be used
to assess and treat chronic wounds, track the healing trajectory of the wound,
plan future interventions, estimate the risk of hospitalization for the patient, or
estimate the healing time [9], which can significantly lower hospitalization and
amputation rates. It takes a great deal of effort and knowledge for profession-
als to manually mark the wound area and determine its severity without any
inaccuracies. These factors are detrimental to the management of DFU because
appropriate wound healing requires prompt and precise wound care decisions and
treatments. Therefore, an automated approach is crucial for quick wound assess-
ment, investigation, and treatment. Automatic segmentation of wound images
can benefit significantly from computer-aided diagnosis and ailment location [10].

In binary wound segmentation, each pixel in the image is categorized as
wound or non-wound. In the beginning, researchers proposed traditional wound
segmentation methods involving learning algorithms. For example, methods [11-
14] utilize watershed segmentation, threshold-based techniques, feature extrac-
tion methods, and similar approaches for semantic wound segmentation. Chal-
lenges faced by these methods include sensitivity to lighting conditions, skin
color variations, resolution, effective feature engineering, and manual parameter
optimization.

Over the years, with the unprecedented success of convolution neural net-
works (CNNs) in the medical imaging domain, researchers have also introduced
deep learning-based segmentation frameworks that outperformed the traditional
methods for wound segmentation. A CNN model for diabetic wound segmenta-
tion based on MobileNet-v2 was presented in [15]. The prediction masks from
MobileNet-2 were converted into binary masks. Subsequently, to create the final
segmentation mask, post-processing techniques for hole-filling and noise removal
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were applied to the predicted mask. Liu et al. [16] introduced a dual-view segmen-
tation technique that uses a learnable lighting correction module as a prepossess-
ing step. This method employed characteristics from original and illumination-
corrected images, enhancing the final result of wound segmentation. Cao et al.
[17] proposed a hierarchical segmentation and multilevel classification paradigm
to classify diabetic foot ulcers (DFUs) into five grades based on Wagner’s wound
assessment criteria.

The above methods face challenges in manual feature engineering or
encounter overfitting and generalization problems due to various factors-for
example, lack of available training data, skin color variations, and different light-
ing conditions. In semantic segmentation, especially in the ulcer wound image
task, structural and textural information like wound silhouettes are very impor-
tant. Moreover, the training data for wound images is also limited, and the model
focuses on learning the color variations while neglecting the task-specific salient
features. As a result, the model struggles with generalization and overfitting
problems. Gray-scale images are a simplified representation that has the poten-
tial to help the model (e.g., using augmentation) focus on task-specific relevant
information while suppressing irrelevant ones.

In [18], authors review 20 studies on measuring wound sizes using image
processing techniques. Many of the studies used color-to-grayscale conversion
as the first preprocessing step. All these approaches used traditional conver-
sion methods based on fixed weights of transformations between RGB input
data and luminance/intensity related color models such as HSV (hue, saturation
value) or YUV/YCbCr (Y-luminance, UV or CbCr two chrominance compo-
nents). These studies, and others presented in the next section, do not analyze
to what extent color improves semantic segmentation results compared to single-
component images, especially when the grayscale image is obtained not for fixed
color-to-grayscale conversion weights but for learned domain-specific weights. It
is also challenging to represent colors in digital images relatively constant over
varying illuminations and different imaging sensors. Single-component images
can potentially reduce the influence of color changes on the subsequent pro-
cessing steps, and therefore, many image processing tasks use color-to-grayscale
conversion. However, reducing the color components is a potential limitation
of the information contained in an image. Hence, a need exists to analyze the
influence of color and color reduction on wound semantic segmentation.

This study aims to investigate the effect of color on ulcer wounds in seman-
tic segmentation. First, it is investigated to what extent domain-learned color
conversion weights can improve the results of semantic wound segmentation com-
pared to traditionally used color-conversion methods based on fixed, YUV color
model weights. Second, we aim to analyze how color improves wound seman-
tic segmentation results compared to grayscale images, primarily obtained using
domain-learned color conversion weights. To reach these aims, first, we adopt
different traditional RGB-grayscale conversion methods to convert the input
RGB image to a single component representation. Then, we propose a learned
grayscale technique that adaptively maps RBG color images to the learned
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grayscale feature maps. We train the semantic segmentation models using vari-
ous color compositions and compare the results.
The key contributions of our work are as follows:

a) We designed a simple, universal model architecture to learn the task-specific
weights for color-to-grayscale conversion.

b) We demonstrated that using learned weight for color-to-grayscale conversion
leads to much better results than traditional RGB-grayscale conversion meth-
ods.

¢) We show that for the best model architecture, no statistical difference was
found comparing segmentation metrics obtained for models trained on RGB
images and grayscale images converted with learned weights.

d) We demonstrated that color preprocessing using the adjusted retinex method
[19] can improve semantic segmentation results for the applied (not tuned)
model for the similar but new domain.

e) We compared the influence of several color preprocessing steps on the seman-
tic segmentation of ulcer images.

2 Related Work

This section reviews the previous works on wound image segmentation, including
deep-learning and traditional machine-learning-based segmentation approaches.

The first step in diagnosing and treating of chronic wounds is to measure the
wound area. Several traditional image-processing methods have been applied
to classify wound tissue. For example, color descriptors and texture detectors
have been used to automate the monitoring of the wound healing process, to
extract information from wound images, and to classify skin patches as nor-
mal or abnormal [20,21] However, these experiments did not provide reliable
tools for process automation Likewise, Song et al. [22] delineated 49 attributes
employing a feature engineering approach based on traditional machine learning
methods, including K-mean clustering, thresholding, region growth in grayscale
and RGB, as well as edge detection. Subsequently, the resulting features were
fed into a multilayer perceptron (MLP) and radial basis function (RBF) to learn
and evaluate the segmentation results. Some other techniques include creating a
red-yellow-black-white probability map [23], which is then optimized for thresh-
olding or region growth [24]. However, feature engineering techniques require
human involvement in feature selection and cannot adapt to image irregulari-
ties, leading to degraded predictive performance. These methods are subject to
several constraints, including sensitivity to skin color, the involvement of a cer-
tain degree of feature engineering, the lack of full automation of the end-to-end
process, and the manual parameter tuning involved. The authors in [25] review
different methods to measure wound area, including elliptical estimation, square
counting, photogrammetry using imaging devices, and 3D methods such as laser
3D scanners as well as sterecophotography and 2-camera systems. Similarly, a
study in [26] evaluates the accuracy of digital planimetry (DP) with adaptive
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calibration for measuring wound area on curved surfaces. The DP with adaptive
calibration exhibits significantly lower error (0.60% vs. 2.65% and 2.23%) and
higher precision, eliminating systematic errors, compared to the SilhouetteMo-
bile device and a standard DP. The method is 4.4 times more accurate and 7.4
times more precise, making it one of the best methods for measuring wound area
on curved surfaces.

Recent advancements in deep learning have enabled automated feature
extraction and data-driven learning. Researchers now leverage convolutional neu-
ral networks (CNNs) to identify wound-affected tissues and segment chronic
wound areas effectively [15]. To mitigate the above limitation in chronic wound
segmentation, Goyal et al. [27] exploit fully convolution networks (FCN) using
different model configurations, including FCN-32s, FCN-8s, FCN-16s, and
AlexNet. These models were first pretrained in ImageNet [28] and Pascal VOC
[29] dataset and then evaluated on the DFU dataset, consisting of 600 wound
images. FCN-16 architecture performed adequately, achieving a 79.4% dice score.
However, segmentation images with smaller wound areas and irregular borders
remained challenging. U-Net being a famous architecture in semantic segmen-
tation tasks, Niri et al. [30] employed it on the ESCALE dataset for diabetic
food ulcer segmentation. In another approach, authors [31] introduced a pre-
processing stage before the training of the CNN network to filter noise effects.
Later, transfer learning techniques were introduced to elevate the generalization
ability of the deep learning model and trained on the Mask-RCNN model to
segment chronic wound images [32].

An ensemble network including LinkNet and U-Net employing pretrained
EfficientNetB1 and EfficientNetB2 encoders, respectively, with additional pre-
training using the Medetec dataset was proposed by Mahbod et al. [33] for the
FUSeg challenge 2021 [33]. The segmentation performance was improved through
fusion techniques, test time augmentation, and fivefold cross-validation. To con-
strain boundary information for the automated segmentation of foot wounds,
Edge-OCRNet was first presented in [34] and used the ConvNeXt backbone
architecture and edge loss function. The Edge-OCRNet segmented mask was
then post-processed to enhance the predicted mask. Global and local attributes
are equally crucial for accurate segmentation tasks. A WSNet with a global-local
architecture was then introduced by Subba et al. [35], which uses the entire image
and its patches to extract high-level semantic information and local context in
wound images. The model is first trained to classify wounds, and then the seg-
mentation data is used to refine the model further. WSNet achieves a dice score
of 84.7% when tested on its own donated dataset, WOUNDSEG, which includes
eight different types of wounds.

Color-to-grayscale conversion was used in many approaches focused on wound
image analysis. All proposed methods use traditional color-to-grayscale conver-
sion based on HSV, YCDbCr, and other color models designed with a human-
in-the-loop. In [36], the authors use color-to-grayscale conversion for the ref-
erence ruler tick detection and wound area measurement before applying ISO-
DATA classification to find a threshold for the image. The combination of RGB
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and grayscale images was proposed in [37]. The authors converted the RGB
Region-Of-Interest using ITU-R BT.709 luma coefficients. Next, they modeled
the marginal distributions of the three main classes of the ROI gray image using
a linear combination of discrete Gaussians (LCDG). In [38], the authors used
color-to-grayscale conversion before Otsu’s thresholding to obtain the wound
segment. The color-to-grayscale conversion was also used [39] before image seg-
mentation. The Authors used grayscale versions of images to apply normalized
cuts for segmentation-based detection of wheals on the skin. In [40], the authors
selected the saturation plane of the HSV color model to create a single grayscale
image used for wound segmentation with the active contour algorithm.
Analyzing research on the processing of wound color images reveals that
many approaches use color information in semantic segmentation. However, the
existing approaches have not demonstrated the role of color in semantic segmen-
tation. Moreover, all studies that use color-to-grayscale conversion in an initial
wound color image processing phase use fixed conversion weights. These weights
are established based on human vision properties using color models such as
YUV or HSI. So, there is a need to design and perform a study to answer
research questions, including the following: 1) Does the machine-learned conver-
sion from color to grayscale enhance semantic segmentation outcomes compared
to using fixed conversion weights? 2) To what extent does color information in
wound images improve the semantic segmentation results compared to the use
of single component images obtained either by the traditional color-to-grayscale
conversion using fixed weights or by the use of learned conversion weights?

3 Method

This section describes the proposed approach to investigate the influence of color
in semantic segmentation tasks. In particular, we investigate how learned weights
for color-to-grayscale conversion can impact the model’s learning ability to focus
on specific features with less information than RGB input.

We employed two different U-Net architectures in various configurations to
investigate/ evaluate the research question. One model uses a U-Net architecture
and a VGG-16 as an encoder, pretrained on the ImageNet dataset. The second
model comprises the LiteSeg model using pretrained MobileNet as a backbone.
Using pretrained encoders for the initial extraction of features is vital for avail-
able datasets with a limited number of cases. Other parts or encoder/decoder
architecture are fully trained. Figure 1 presents a block diagram of our archi-
tecture. Overall, this architecture consists of four main blocks. First, the input
RGB image is passed through a specially designed layer that could be attached
to any model to learn the color-to-grayscale conversion weights. This layer is
skipped for original or preprocessed RGB inputs. Additionally, we use different
color conversion techniques to convert an input RGB image into: 1)Gray World
white balance [41], 2) Adjusted retinex white balance [19], 3) grayscale using
Luma (L), and 4) grayscale using weights. We followed traditional ITU-R BT
weights to convert the RGB image into a grayscale image. After color conversion,
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images are fed to the base model. The model’s head performs pixel classification
for semantic segmentation.
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Fig. 1. Description of the proposed method.

3.1 Color Conversion

Luma (Y’) or luminance (Y) is often used in many practical computer vision
applications as the lightness dimension for color images. Typically, it is calculated
as the weighted average of the gamma-corrected color components, i.e., R, G, and
B. The weights, as presented in Eq. (1), were formulated to correspond with the
cone sensitivity functions in the retina, guaranteeing that grayscale conversion
is coherent with human vision.

Y =W, -R+W,y-G+W5-B (1)

where Wy, Wa, and W3 are the weights corresponding to each RGB color.

As shown in Egs. (2), (3), and (4), different sets of W;-W3 weights values
have been proposed to represent the RGB contribution to perceived lightness,
e.g., [42-44]:

Y'(Rec.601, SDTV) = 0.2989 - R + 0.5870 - G + 0.1140 - B (2)
Y'(Rec.709, HDTV) = 0.2126 - R+ 0.7152 - G + 0.0722 - B (3)

Y’ (Rec.2020,UHDTV) = 0.2627 - R+ 0.6780 - G + 0.0593 - B (4)

The ITU-R BT.601 weights, as in Eq. (2), are often used as a popular stan-
dard for color-to-grayscale conversion (e.g., in the popular Python framework
PIL). These traditional color-to-grayscale conversion methods, as in Eq. (2)—(4),
were defined for human observers considering the sensitivity functions of cones
in the retina. However, a machine has no such limitation, and the input grayscale
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Fig. 2. Top (from left): RGB to grayscale conversion outputs using different ITU-R
standards (the PIL.Image.convert(‘L’) method uses ITU-R BT.601). Bottom (from
left): differences between some conversion results.

image can be a result of data acquisition using a dedicated, single-channel cam-
era or can be a result of a dedicated preprocessing step aimed at improving
the generalization capabilities of a deep learning (DL) model. Figure4 depicts
different grayscale images using different conversion methods (Fig. 2).

In this work, we leverage the ability of CNN to learn data-driven features for
learned grayscale transformation from an RGB image to a single color space. For
this purpose, a CNN layer is introduced in the color conversion stage, presented
in Fig. 1. In deep learning frameworks, the cross-correlation operation is used
for convolution (since weights are learned). This operation is defined as in Eq.

().
Cin—1
Y(Cout) = bias(Cout) + Y W(Cout, k) - input(k) (5)
k=0
where C is the number of input/output channels, and W is the learned weights.
Our first layer is defined as Conv2D (3, 1, kernel =1, bias =False) without
activation function. Therefore, this CNN layer receives 3 channels (RGB) at the

input with a kernel size of 1 and outputs a single-channel feature map without
bias, as presented in Eq. (6)—(7).
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2
Y (Cout) =0+ > W(Cout, k) - input (k) (6)
k=0
Y (Cout) = Wo - input(0) + W7 - input(1l) + Wy - input(2) (7)

The results is equivalent to (1) with learnable weights Wy, Wy, Wa. The resul-
tant single-channel feature map could be equivalent to a grayscale image (when
a grayscale color map is used), which is optimized for machine learning rather
than human visual interpretation. This CNN-based color space transformation
enables the model to emphasize vital information and learn low-level features,
like texture, edges, contours, and patterns. As a result of this approach, the
model can avoid focusing on irrelevant information such as hue variations and
extract robust feature representations, resulting in better generalization and less
tendency to overfitting. This is especially beneficial when the training data is
small.

4 Experiments Settings

In our experimental analysis, we used two publicly available datasets, including
Foot Ulcer Segmentation Challenge (FUSeg) [45] and Advancing the Zenith of
Healthcare Wound and Vascular Center (AZH-WVC) [15] datasets. Two seman-
tic segmentation models, LiteSeg_MobileNet and UNet_VGG, with pretrained
weights, are used as base models in this experiment. First, we train each model
using RGB image as input and evaluate their performance on the test dataset;
then, we train the model using the color conversion module in the preprocess-
ing stage and compare the accuracy results from both configurations. For color
conversion, we train models using each color-to-grayscale conversion method,
including learned weights, RGB ad]j. retinex, RGB ad]j. retinex learn gray, RGB
gray world, RGB gray world learn gray, Luma, and Weights.

4.1 Datasets

Details of the datasets used for training and testing are given below.

The Chronic Wound Dataset [15]: AZH-WVC includes 1109 photos of 889
patients with ulcer wounds. The dimensions of each image are 512 x 512 pixels.
There are 832 photos in the training dataset and 278 in the test dataset.

FUSeg Dataset [45]: The Foot Ulcer Segmentation (FUSeg) dataset comprises
1210 clinical images. 810 images and their corresponding labels are available for
training, while 200 images are reserved for validation. The remaining 200 images
and their masks were not made public by the challenge organizer. All photos in
this collection possess dimensions of 512 x 512 pixels.

In this study, we used only the FUSeg dataset for training. The evaluation was
performed on the FUSeg validation and AZH-WVC test subsets. It is essential
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to underline that no models were trained using any image from AZH-WVC to
show the generalization properties of the trained models using different color-
preprocessing approaches.

Figure 3 presents examples of images from both datasets. Please note that
examples from the AZH-WVC dataset are presented as original images (without
preprocessing). These images contain a dominant area of zero-padding values,
which is challenging for segmentation using a model trained on another dataset.

{a) 1513 ' ch

Fig. 3. Examples of wound images from FUSeg and datasets. Images (a) and (b) are
from FUSeg, while images in (c) are from the AZH dataset.

4.2 Model Training

Each model with each configuration was independently (random start) trained
10 times. As a result, 80 models (8 x 10) were obtained for the UNet_-VGG
architecture, and 80 models (8 x 10) were obtained for the LiteSeg architecture.
For statistical analysis, we used 9 best models for each configuration (one worst
was skipped to keep the variance comparable between experiments). Usually, the
best models are selected, but to analyze the uncertainty, we used 9 best models
to analyze mean values and standard deviations of IoU, Dice, FPR, and FNR
metrics.

All experiments were performed using identical training codes (except for
differences in model definition) prepared in PyTorch. No augmentation was used.
Other training parameters are the Adam optimizer (initial learning rate = 0.001),
number of epoches = 60, cross-entropy loss function, and the StepLR learning
rate scheduler with gamma = 0.1 and step size = 10.

5 Results

This section illustrates the experiment results and evaluates the segmentation
performance. Different performance metrics are considered in this evaluation,
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including IoU, Dice, False positive rate (FPR), and False negative rate (FNR).
As an additional metric, we calculate evaluation accuracy. It was greater than
94%. However, the accuracy is calculated for both classes (with dominant back-
ground), so it is not very informative. Therefore, we report statistics on the
above-mentioned segmentation metrics.

Fpanss Epact

Fig. 4. Example training curves (in blue) and validation curves (in orange) for the
UNet_-VGG model (left) and LiteSeg model (right) on RGB images preprocessed using
the adjusted Retinex method.

Figure 5 presents an example of the qualitative results of wound segmentation
from the UNet-VGG model when using learned weights color-to-grayscale con-
version. Visual inspection reveals that the model effectively segments the wound
image precisely and accurately. While comparing the predicted mask with the
actual wound image, we observe that our model with the learned weights module
can accurately encompass the contour of the wounded area, which is identical
to the RGB image.

Fig. 5. From left: an example of the original photography of a foot ulcer, ground truth
mask, and predicted mask using UNet-VGG model with learned weights for color-to-
grayscale conversion.
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Fig. 6. From left: the result of color image preprocessing (conversion to grayscale using
the BT-601 standard), the output of the first layer of the UNet_VGG model (Conv2D
with kernel size = 1 and no bias), the output of the color image conversion using weights
of the first layer with the overlaid, predicted ulcer segment.

Figure6 plots three different images after the color conversion process. The
image on the left is after color-to-grayscale conversion using the BT-601 stan-
dard, while the image in the middle is extracted from the output of the learned
weights module of the UNet-VGG model. Similarly, the image on the right is
produced using the learned weights (extracted from the first layer) and manually
applied to the RGB image. This shows how three learned weights, i.e., Wy, Wy,
and W3 (Eq. 1), can be applied after the knowledge obtained from the machine
learning process. The last image demonstrates the segmented ulcer overlaid on
the new grayscale image. It is noticeable that these new grayscale images explic-
itly highlight the shape of the affected area and delineate a distinct boundary
line of the wound.

We further analyze the significance of each color conversion method for the
given RGB input by extending our evaluation procedure with quantitative data
from our experiment findings. For this evaluation, we include UNet_VGG and
LiteSeg_-MobileNet deep learning architectures. Both models are trained on the
FUSeg dataset and tested on the FUSeg validation subset and on the AZH test
dataset.

Table1 and 2 show the testing results on the FUSeg and AZH datasets,
respectively. It is noticeable that the model achieves significantly lower results
using traditional, fixed conversion weights to the RGB image. However, the
learned grayscale image still achieves comparable IoU and Dice scores, while
the training parameters for the learned grayscale image are three times less than
those for the RGB image.

We performed tests to analyze the statistical difference between results for
DICE metrics obtained for selected groups. For example, the results obtained
for 1) RGB input images and 2) grayscale images converted with the learned
weights were not statistically different for the FUSeg validation set (p-value =
0.052 for the Mann-Whitney test, Table 1) and statistically different for the AZH
test set (but p-value = 0.042 for Mann-Whitney test).
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Table 1. Performance comparison of UNet_VGG on FUSeg dataset (G - grayscale)

Config mloU|Std IoUmDice Std DicemFPR/Std FPRmFNR/Std FNR
RGB 0.769/0.071 |0.868 |0.048  [0.041 |0.014  |0.091 |0.059
G: learned weights for RGB|0.732/0.030 0.845 [0.020  |0.052 |0.008 0.141 |0.098
RGB: adj. retinex 0.785/0.015 |0.880 |0.009 |0.051 0.008 0.088 |0.047
G: 1. weights adj. retinex |0.695/0.056 |0.819 [0.041  |0.043 |0.012 0.163 |0.065
RGB: gray world 0.777/0.009 |0.875 |0.005 |0.045 0.008 0.087 (0.012
G: 1. weights gray world 0.723/0.022 |0.839 |0.015 |0.055 0.019 0.171 |0.175
G: Luma 0.373/0.101 |0.536 |0.100  |0.067 0.096 0.452 |0.084
G: Weights 0.445/0.055 |0.614 |0.053  [0.068 |0.037  |0.346 |0.077

Table 2. Performance comparison of UNet_VGG on AZH dataset

Config mloU|Std IoUmDice|Std DicemFPR Std FPRmFNR/Std FNR
RGB 0.454/0.080 |0.620 |0.078  |0.005 0.003 0.375 |0.081
G: learned weights for RGB|0.377/0.083 0.542 [0.094 |0.018 |0.024  |0.479 |0.102
RGB: adj. retinex 0.503/0.034 |0.668 |0.030  |0.006 0.002 0.347 |0.048
G: 1. weights adj. retinex |0.304|0.103 |0.456 [0.126  |0.006 (0.004  |0.581 |0.137
RGB: gray world 0.409/0.066 |0.577 |0.067  |0.004 0.002 0.444 10.070
G: 1. weights gray world 0.415/0.061 |0.584 |0.061  |0.011 0.005 0.458 |0.120
G: Luma 0.116/0.050 |0.203 |0.082  |0.014 0.019 0.815 |0.095
G: Weights 0.179/0.077 |0.296 |0.106  [0.017 |0.014  |0.737 |0.099

Table 3 and Table 4 summarize the testing results of the LiteSeg_MobileNet
model on the FUSeg dataset and AZH dataset, respectively. Similar to the
UNet_VGG, the LiteSeg_MobileNet model also performs adequately with learned
grayscale images compared to the RGB input.

6 Discussion

In this section, we discuss the effects of color on semantic segmentation in wound
images. As described earlier, deep learning models often face challenges in the
accurate segmentation of ulcer wound images due to limited data availability.
Semantic segmentation focuses on pixel-level classification by assigning a label to
each pixel in a given image. Therefore, local and global features are instrumental
for accurate performance. Local features capture fine-grained details, helping the
model to find wound contours or boundary edges, while global features focus on
contextual information, understanding wound shapes and similar skin patterns.

We are investigating the impact of learned weights on a single-channel image,
which could aid the model in identifying the most pertinent features early on.
Figure 6 presents three images produced from an RGB image (see Fig. 5 (left)),
using three different color conversion methods. Compared to the image on the left
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Table 3. Performance comparison of LiteSeg_MobileNet on FUSeg dataset

Config mloU|Std IoUjmDice|Std DicemFPR Std FPRmFNR|Std FNR
RGB 0.744/0.012 |0.853 |0.008 |0.053 |0.011 0.102 (0.019
G: learned weights for RGB|0.675/0.025 ]0.806 (0.018 |0.069 |0.016 0.144 |0.041
RGB: adj. retinex 0.732/0.009 |0.845 |0.006  |0.057 |0.011 0.109 (0.026
G: 1. weights adj. retinex |0.676/0.027 ]0.806 [0.019  |0.085 |0.020 0.125 (0.041
RGB: gray world 0.73310.013 |0.846 |0.009  |0.059 |0.013 0.104 (0.020
G: 1. weights gray world 0.67410.031 |0.805 |0.022  |0.077 |0.022 0.136 (0.030
G: Luma 0.2290.106 |0.361 |0.135 |0.023 |0.006 0.673 (0.115
G: Weights 0.2590.083 |0.405 |0.108  |0.052 |0.057  |0.597 |0.107

Table 4. Performance comparison of LiteSeg_MobileNet on AZH dataset

Config mloU Std IoUmDice|Std DicemFPR|Std FPRmFNR|Std FNR
RGB 0.369/0.071 |0.535 0.075  |0.005 |0.003 0.493 0.077
G: learned weights for RGB|0.237/0.046 |0.381 (0.061 0.005 [0.002 0.660 |0.106
RGB: adj. retinex 0.440/0.037 10.610 0.035 |0.007 |0.004 0.415 |0.059
G: 1. weights adj. retinex |0.344/0.073 |0.507 (0.082  |0.011 |0.006 0.540 |0.143
RGB: gray world 0.374/0.0563 |0.542 |0.057  |0.006 0.003  |0.475 |0.064
G: 1. weights gray world ~ {0.272/0.100 |0.418 |0.133  |0.008 |0.005  |0.628 [0.155
G: Luma 0.021/0.012 |0.040 0.023  |0.001 |0.001 0.969 10.021
G: Weights 0.027/0.019 |0.052 0.034  |0.002 |0.003 0.961 10.020

(BT-601 standard), the image in the middle (learned weighted image) amplifies
the wound boundaries, which helps the model refine local features. Through
this analysis, we conclude that machines can learn to interpret colors in many
ways and differently than humans. This interpretation can be advantageous in
improving the generalization properties of the trained ulcer segmentation model
using color-to-grayscale conversion.

The quantitative results clearly show the difference in segmentation met-
rics between grayscale images obtained using traditional conversion methods
and weights learned during the model training. For example, for the UNet_-VGG
model and FUSeg validation dataset (Table 1), the mean Dice value for grayscale
images converted using learned weights is 0.845, while the same metric for tra-
ditional conversion methods is 0.536 and 0.614. Interestingly, the mean Dice
value obtained for input RGB images was comparable to the result for grayscale
images converted using learned weights (no statistical difference). The results
obtained for the AZH test subset show lower values of all metrics. This could
be understood since these images are much smaller and different, and examples
from this domain were not used during training. However, for both models, much
better results were obtained when adjusted retinex preprocessing was used (sim-
ple white balance) compared to the original RGB images. This demonstrates
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the need for color calibration for RGB images (or huge training datasets with
sufficient representation of all domains - often impossible) or the potential use
of augmentation with grayscale images obtained for learned weights.

Furthermore, results from Tables1, 2, 3, and 4 also show that fixed-weight
methods are in line with human observation, while machines interpret the same
color differently. The fixed-weight techniques do not help the deep learning mod-
els, leading to poor prediction performance. On the other hand, learned weights
images present (in some configurations) comparable results with RGB images.
Usually, the goal of research is to find the best model. In performed experiments,
the UNet_VGG performed better for both datasets. For this model, the values
of segmentation metrics for grayscale images obtained with learned weights were
comparable with those obtained for RGB images. Therefore, the general con-
clusion is that such preprocessing is valuable and worth further investigation.
The conversion weights can be learned for larger datasets and used in other
preprocessing and augmentation experiments.

This study has several limitations, including a few datasets used in exper-
iments, a limited number of models investigated, etc. We do not have many
fixed-based conversion methods from three channels to a single channel, e.g.,
Cr, Ch, a*, b*, etc. However, preliminary results suggest the potential role of
machine-oriented data preprocessing instead of traditional human-related color-
to-grayscale conversion. Other methods can be compared in future research.

Other researchers used traditional color conversion methods to grayscale
(e.g., [36—40]). In contrast, learned-based color-to-grayscale conversion methods
can be potentially better for many tasks, mainly when fully explainable methods
are applied for wound image analysis. In such cases, preprocessing using learned
weights can be introduced instead of traditional conversion. Further, explainable
image analysis methods can be used for wound shape analysis (e.g., monitoring
of the healing process), wound classification, etc.

Thus, from these experiments, we validate potential applications of learned
grayscale features in semantic segmentation, especially in ulcer wound segmen-
tation, where wound shape, contour, edges, and texture attributes are very rele-
vant. Additionally, learned grayscale images can partially reduce the complexity
of the model, help the model learn the most critical features, and potentially
avoid overfitting issues (they are less sensitive to color variations).

7 Conclusion

Early and precise assessment of ulcer wounds is crucial for proper treatment and
management. Visual inspection by clinical professionals for diagnosis is labor-
intensive and susceptible to human error. In contrast, computer-aided methods
are highly efficient and can help early diagnosis. However, due to scarce data,
deep learning methods face challenges of generalization and overfitting issues.
This study aimed to address these challenges by exploring the impact of color
on the segmentation of wound images. We designed a simple, universal model
architecture to learn the task-specific weights for color-to-grayscale conversion.
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We demonstrated that using learned weights for color-to-grayscale conversion
leads to significantly better results in the semantic segmentation of wounds,
achieving a mean Dice value of 0.845, compared to 0.536 and 0.614 for tradi-
tional RGB-to-grayscale conversion methods. For the best model, no statistical
difference was found when comparing DICE metrics obtained for models trained
on RGB images (DICE = 0.868 4+ 0.048) and grayscale images converted with
learned weights (0.845+0.020). The p-value calculated using the Mann-Whitney
test for the FUSeg validation set was > 0.05. We also demonstrated that color
preprocessing using adjusted retinex can improve semantic segmentation results
for similar but new domains for the applied (not tuned) model. Using grayscale
images as input data presents competitive performance and lower computation
complexity than RGB images. Additionally, using grayscale images as input data
can potentially reduce the number of model parameters. The color-to-grayscale
conversion weights can be learned for much more extensive (mono-domain or
multi-domain) datasets and further used in other experiments for preprocessing,
augmentation, and explainable image analysis methods.
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