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Cardiovascular disease (CVD) is one of the leading causes of mortality
worldwide, emphasizing the need for continuous, scalable and non-
invasive monitoring. Although traditional methods, such as ECG and
PPG, are effective but have limitations because they require direct skin
contact and are used in clinical settings. To address these challenges,
we propose STREAM-Net, a dual-branch deep learning framework for
remote photoplethysmography (rPPG), enabling contactless vital sign
measurement through facial video analysis. Our approach incorporates
preprocessing techniques and Monte Carlo dropout for physiological
signal enhancement and uncertainty quantification to ensure robust and
reliable predictions. Furthermore, we explore advanced image
enhancement methods, including super-resolution and deblurring (e.g.,
ESDR, LapSRN, and FaceSR) to enhance signal recovery in both RGB
and thermal imagery. Experimental results demonstrate that enhanced
image quality significantly improves rPPG feature extraction.

Cardiovascular disease, remote photoplethysmography (rPPG), super
resolution, remote health monitoring, machine learning
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EXECUTIVE SUMMARY

Cardiovascular disease (CVD) is the leading global cause of mortality, emphasizing the
need for continuous, scalable, and non-invasive monitoring. Although Traditional
methods, such as ECG and PPG, are effective, but limited by their reliance on direct
contact with skin and clinical settings. To address these limitations, we proposed
STREAM-Net [14], a dual-branch deep learning framework for remote
photoplethysmography (rPPG), which measures vital signs simply by analysing facial
videos. This approach eliminates the need for physical contact or specialized equipment.
Our proposed STREAM-Net employs a preprocessing pipeline, which incorporates
resizing, face cropping, and temporal normalization to ensure robust spatio-temporal
feature extraction. Additionally, we integrated a Monte Carlo dropout technique to
quantify uncertainty in predictions to measure reliability and its applicability in clinical
simulation. We further extend our research to investigate how advanced image
enhancement methods, including super-resolution and noise removal, can enhance key
rPPG-relevant features in both RGB and thermal imagery. This enhancement can lead to
better recovery of physiological signals. Our comprehensive experiments on super-
resolution and deblurring demonstrate that advanced deep learning models (e.g., SwinlR,
EDSR, LapSRN) substantially improve the quality of RGB and thermal images,
facilitating improved recovery of physiological signal/feature. These developments
promote accessible, contactless cardiovascular care by providing the foundation for
practical uses in telemedicine, home monitoring, workplace safety, and public health.

INTRODUCTION

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality
globally, affecting millions of people and exerting a substantial burden on global
healthcare systems[1]. Physiological health directly relies on heart condition and requires
continuous monitoring to detect early warning signs and prevent adverse events, such as
stroke and arrhythmias. Traditional health monitoring methods, including
electrocardiography (ECG) and photoplethysmography (PPG), require specialized
equipment, clinical visits, and direct skin contact. These methods are expensive and
impractical for long-term use. It requires direct clinical professional involvement and can
be uncomfortable due to direct skin contact. These limitations introduced an obstacle to
continuous cardiac monitoring for individuals requiring long-term surveillance,
particularly elderly patients and those in remote areas[2].

In response to these limitations, remote photoplethysmography (rPPG) has emerged as an
innovative technique that can extract cardiovascular data without requiring physical
contact. Remote photoplethysmography (rPPG) [3] is a non-invasive technique that uses
subtle changes in blood volume to determine physiological signals, including pulse rate
(PR), pulse rate variability (PRV), and respiratory rate. Compared to traditional
techniques such as ECG and PPG [4], which require direct contact with the skin, rPPG
offers a more practical and comfortable monitoring option, using remote cameras/sensors
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to capture changes in light absorption and reflection caused by blood flow [5]. An
increasing number of studies have been reported on remote rPPG in recent years, which
utilize video or ordinary cameras to achieve non-contact remote detection of
physiological signals[6].

The non-invasive nature of rPPG and seamless integration offer various practical
applications, including healthcare, everyday life, and research. In the context of
telemedicine, remote photoplethysmography (rPPG) enables medical professionals to
assess patients' cardiovascular health during virtual consultations using a simple video
call setup [7]. This functionality is particularly beneficial in emergency triage situations
where rapid vital sign evaluation is critical, as well as in managing chronic illnesses and
conducting routine checkups [8].

Another revolutionary application is home monitoring, which allows individuals to
continuously check their cardiovascular health without needing any additional gadgets.
While watching TV, using a computer, or going about their daily activities, people with
chronic illnesses or elderly individuals living alone can all benefit from this seamless
monitoring [9]. This ambient monitoring method not only provides doctors with
comprehensive, long-term information about their patients' health but also removes
barriers to compliance [10].

Incorporating rPPG technology in the workplace presents exclusive prospects for
occupational health surveillance. The integration of rPPG technology in the workplace
presents unprecedented potential for occupational health monitoring. It is possible to
monitor workers in physically demanding jobs, high-stress workplaces, or safety-critical
tasks for indications of exhaustion, stress, or cardiovascular discomfort without
interfering with their work or forcing them to wear extra gear. This capability has the
potential to transform workplace safety and wellness programs entirely [11].

Other potential use cases include applications related to security and public health.
Airport screening systems could incorporate rPPG to identify individuals experiencing
medical distress or elevated stress levels, enhancing biosecurity without physical contact
[12]. Similarly, research applications in human-computer interaction, psychology, and
behavioral studies hold another promising prospect. With rPPG, researchers can examine
physiological correlates of different stimuli, stress reactions, and emotional responses in
natural environments without the limitations imposed by wearable sensors. This potential
could improve our knowledge of human behavior, emotion control, and the physiological
effects of different settings or interventions [13].

In conclusion, remote rPPG effectively addresses significant gaps in cardiovascular
disease management by enabling contactless and scalable monitoring, particularly
important given the increasing prevalence of these health issues. With advancements in
machine learning, this technology could revolutionize preventative healthcare, allowing
the tracking of vital signs as simple as facing a camera.
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1 PREPROCESSING FOR STREAM-NET

In the initial phase of the project, a dedicated preprocessing technique [Annex 1] was
developed and implemented to prepare raw RGB face image sequences for input into the
dual-branch deep learning model. These preprocessing steps are essential for ensuring
that the spatio-temporal features extracted by the deep learning network are both accurate
and reliable. This preprocessing pipeline is a vital part of the STREAM-Net framework,
which was recently published in a Q1 journal [14].

The STREAM-Net model was trained and evaluated on the PURE [15] and UBFC [16]
datasets, which are open-source RGB facial imaging data for physiological signal
estimation. These datasets are collected under a controlled environment, including
illumination and motion.

1.1 Key Preprocessing Steps

The preprocessing pipeline involved several steps, including image resizing,
normalization, and face cropping. Below are details of these steps.

e Input Resizing: The raw RGB image sequences were resized to a fixed spatial
resolution of 144 X 144 pixels. This uniformity in size reduces computational
cost while ensuring consistent input shape across all samples.

e Dual-Branch Input: STREAM-Net is a dual-branch architecture consisting of a
spatial and temporal branch, each receiving a different pre-processed input. The
spatial branch takes a downsampled raw frame c(t), while the temporal branch
receives a normalized frame, calculated using the difference between two
consecutive frames.

The normalized frames are calculated as:
c(t+1)—c(t)
c(t+1)+c(t)

Normalized Frame (t) =

where c(t) and c(t + 1) are consecutive raw frames in a sequence.

This normalization emphasizes dynamic skin changes (e.g., due to blood flow),
while reducing the influence of static visual content like lighting or skin tone.
Normalized features are less sensitive to tiny changes in skin tone or illumination,

[
Figure 1: Raw frames from the PURE dataset and the normalized R, G, and B frames.
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which promotes better generalization across datasets. A raw frame and a
normalized frame of two consecutive frames are shown in Figure 1.

e Face Cropping: Before normalization, face cropping is applied to crop the region
of interest (ROI) and discard background pixels that do not contribute to skin
variation.

This preprocessing pipeline ensures the input to STREAM-Net is both spatially and
temporally consistent, with reduced susceptibility to nuisance variables such as
illumination and skin tone. It enhances the model’s ability to extract robust features for
downstream tasks like subtle variation on the skin surface due to blood pulsation.

2 MC-DROPOUT FOR UNCERTAINTY ESTIMATION

To quantify the uncertainty of the STREAM-Net, we employ the Monte Carlo dropout
(MC-dropout) technique. The MC-Dropout method utilizes dropout during inference to
estimate epistemic uncertainty. Dropout is a regularization technique used in deep neural
networks to avoid overfitting problems. It randomly deactivates a subset of neurons from
the learning process during the training phase. Figure 2 illustrates the role of dropout
during the training and inference for both model configurations, including the standard
model and the Monte Carlo dropout model for uncertainty estimation.
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Figure 2: Model configurations for deterministic model prediction and Monte Carlo
dropout for uncertainty quantification.
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2.1 Implementation

To estimate the uncertainty of the STREAM-Net, we employed Monte Carlo (MC)
dropout during the inference. This uncertainty analysis uses four different dropout
configurations, including dropout rates of 0.1, 0.2, dropout div 2, and dropout div 3.
Dropout div 2 and dropout div 3 denote that the original dropout used for training is
divided by 2 and 3, respectively.

During the inference, MC dropout randomly enables the dropout layers and performs 30
predictions against a single input sample over 30 forward iterations.

2.2 MC-Dropout Predictions and Visualization

During the inference, MC dropout randomly enables the dropout layers and performs 30
predictions against a single input sample over 30 forward iterations. Tables 1 and 2
compare the quantitative analysis of the proposed standard model and the model with
dropout enabled during inference. It is noticeable that the proposed model presents similar
performance metrics using different dropout configurations, ensuring consistence
performance.

Table 1: Cross-dataset results, trained on PURE and tested on UBFC. Best results are
shown in bold, and second-best results are underlined

Method MAE MAPE RMSE p
PhyNet [18] 2.370 2.158 2.481 0.990
DeepPhys [19] 1.213 1.421 2.902 0.990
TS-CAN [20] 1.301 1.501 2.871 0.990
EfficientPhys-C [21] 2.131 2.350 3.000 0.940
PhysFormer [22] 1.440 1.660 3.770 0.980
SpikingPhys [23] 2.801 2.810 - 0.830
PhysMamba [24] 0.970 - 1.930 0.990
FactorizePhys [25] 0.770 1.340 3.291 0.991
STREAM-Net [14]

(Standard Model) 1.151 1.305 2.715 0.991
Dropout 0.1 1.151 1.305 2.715 0.991
Dropout 0.2 1.151 1.305 2.715 0.991
Dropout/2 1.151 1.305 2.715 0.991
Dropout/3 1.151 1.305 2.715 0.991

Table 2: Cross-dataset results, trained on UBFC and tested on PURE. The best results are
highlighted in bold, while the second-best results are underlined

Method MAE MAPE RMSE p
PhyNet [18] 8.061 13.671 19.710 0.613
DeepPhys [19] 5.541 5.320 18.511 0.661

8
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TS-CAN [20] 3.690 3.390 13.801 0.820
EfficientPhys-C [21]  5.471 5.401 17.041 0.710
PhysFormer [22] 12.920 23.921 24361 0.472
SpikingPhys [23] 3.831 - 5.701 0.830
PhysMamba [24] 1.20 - 5.990 0.970
STREAM-Net [14]

(Standard Model) 1318 1.384 5.314 0.997
Dropout 0.1 1318 1.384 5.314 0.997
Dropout 0.2 1.318 1.384 5.314 0.997
Dropout/2 1.318 1.384 5314 0.997
Dropout/3 1.318 1.384 5.314 0.997
Dropout 0.9 10.189 10.463 22.612 0.389

30 Monte Carlo Dropout Predictions (Dropout = 0.2)
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Figure 3: Monte Carlo dropout predictions and uncertainty analysis: The first plot presents
30 Monte Carlo (MC) dropout predictions (dropout rate = 0.2), illustrating the model’s
predictive uncertainty. The middle plot compares the mean MC prediction (blue) derived
from MC, with the ground truth (red). The bottom plot depicts the variance across these
predictions, quantifying the model’s uncertainty over time steps (0-300).
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Figure 3 presents a visual analysis of the uncertainty in the model predictions. The first
plot shows 30 Monte Carlo dropout predictions (dropout rate = 0.2), obtained during 30
forward passes against one input sample. The middle plot compares the ground truth
values (red) and the mean prediction (blue), obtained from Monte Carlo predictions. The
variance of all 30 predictions is shown in the bottom plot, which measures the model’s
uncertainty over time steps (0-300). Similarly, Figure 4 illustrates the model’s predictions
under MC dropout with different dropout settings. A higher dropout rate (0.2) introduces
higher prediction variance, while a lower dropout (Div 2 or Div 3) reduces the prediction
variance and presents balanced stability and uncertainty [14].

Monte Carlo Dropout Predictions with Different Dropout Rates
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Figure 4: Figure 4: Monte Carlo dropout predictions uncertainty: Effect of varying
dropout rates on model outputs relative to ground truth.

In general, the predictions remain consistent across all dropout rates, reflecting the
model’s ability to capture the underlying patterns of the data. The bottom subplot exhibits
ground truth values for comparison. By comparing the MC dropout predictions with the
ground truth, we can assess the model’s ability to generalize while incorporating
uncertainty estimation. This analysis highlights the model’s robustness against different
dropout rates and offers a method to quantify uncertainty in Bayesian deep learning

10
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scenarios. It is interesting to observe that there is no difference between the predictions
of the standard model (no dropout during inference) and the predictions under different
dropout rate configurations. This consistence performance supports the reliability of our
model under stochastic conditions. As these performance metrics are indirectly computed
via the Fast Fourier Transform (FFT), small variations in the predicted values of the signal
due to different dropout rates are insignificant and the overall performance remains
unaffected. However, to ensure our uncertainty estimation algorithm, we applied extreme
conditions by setting the dropout rate to 0.9. We observed a remarkable decline in
predictive accuracy when using these extreme dropout settings (Table 2, dropout 0.9).
This experimental analysis ensures that MC-dropout works properly and STREAM-Net
exhibits consistent performance across different dropout rates.

In addition, Fig. 3 shows a visualization of these probabilistic predictions. The first plot
in the figure depicts 30 forward passes on an input sample and the corresponding MC
dropout prediction (with a dropout rate of 0.2). As can be seen from the figure, there are
small variations in each of the predictions, but they are all consistent with the expected
results, and there are no uncertain estimations. The second plot compared the mean of
these probabilistic predictions with the ground truth. This implies that the MC-prediction

30 Monte Carlo Dropout Predictions (Dropout = 0.2)
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Figure 5: MC dropout predictions: A magnified view of the highlighted region (index
40 to 45) illustrating the variability in prediction results across different samples.
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follows the data trend as the actual signal (ground truth). The last plot in Fig. 3 shows the
uncertainty during these 30 inferences with randomly activated dropout layers. In general,
the model uncertainty is low (0.05-0.015), indicating high confidence in the predictions.
However, there are some instances where model exhibits higher uncertainty. For instance,
the MC-dropout variance for data indices 100 and 210 is as high as 0.030. The complexity
of the input data or the variability of the model predictions may lead to such a high
uncertainty region. These fluctuations and spikes in uncertainty indicate that the model
encounters varying degrees of uncertainty throughout the input data sequence.

Monte Carlo Dropout Predictions with Different Dropout Rates
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Figure 6: MC dropout rate predictions: A zoomed-in view of the highlighted region
(indices 70 to 110) comparing the variability in predictions for different dropout rates.

To further understand the variability introduced by the MC-Dropout, Figs. 5 and 6 provide
a closer view of the MC-Dropout predictions, illustrating the predicted variability
associated with the MC-Dropout over a smaller range.

Table 3 provides the mean signal-to-noise ratio (SNR), mean variance and mean standard
deviation of uncertainty to demonstrate the quantitative analysis using different dropout
rates. These statistics reflect that higher the dropout rate, higher the uncertainty, and vice
versa. For example, the mean, variance, and standard deviation for a dropout rate of 0.1

12
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are 0.0049 and 0.002, respectively, whereas the higher the dropout rate (dropout = 0.2),
the greater the uncertainty (mean variance = 0.0113, standard deviation = 0.0045).
Overall, there is no significant difference in the uncertainty comparisons using different
dropout settings compared to the standard model predictions. This validates the robust
performance and adaptability of STREAM-Net under different input conditions. More
details in published paper [14] and in Annex 1 (GitHub repository).

The MC-dropout experiments validates that STREAM-Net maintains consistent
performance across different dropout configurations, with only extreme dropout (0.9)
causing a decline in accuracy. This demonstrates the model’s robustness, reliability under
stochastic conditions, and its ability to provide meaningful uncertainty estimates for
probabilistic predictions.

Table 3: Monte Carlo mean variance and standard deviation (Std) for uncertainty

analysis.
Method Mean SNR Mean Variance Variance Std.
No Dropout 5.739 - -
Dropout 0.1 5.775 0.0049 0.0022
Dropout 0.2 5.812 0.0113 0.0045
Dropout/2 5.800 0.0113 0.0037
Dropout/3 5.768 0.0064 0.0021

3 SUPER-RESOLUTION (SR) ALGORITHMS

The objective of developing new super-resolution and deblurring deep learning (DL)
algorithms is to enhance high-frequency details in thermal images and correct color
distortions, key requirements for local photoplethysmography (PPG) and lesion
differentiation. These experiments serve as a fundamental step towards high-quality
multimodal data enhancement with high-frequency feature recovery and color correction
for local PPG.

3.1 Experimental details
Input Data:

e A subset of facial RGB and thermal images from the BP4D dataset [17] was used
to conduct experiments related to image resolution enhancement.

o Images were artificially subsampled by a factor of 2X and 4X using nearest
neighbour (NN) interpolation to generate low-resolution images.

Evaluation Metrics:
To assess the reconstruction quality of the enhanced/upsampled images, the following

two metrics were used.

13
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e PSNR (Peak Signal-to-Noise Ratio):
PSNR quantifies the ratio between the maximum possible pixel intensity and the
mean square error (MSE) between the reference image I (input image) and the
reconstructed image I (super-resolution). It is quantified in decibels (dB). The
higher the PSNR, the better the image fidelity.

PSNR =101 MAX*
= 0810 MSE

where MAX is the maximum possible pixel value of the image, and MSE =
1 .. Al ]2
XA (BB ()]

e SSIM (Structural Similarity Index):
SSIM measures the perceptual similarity between two images, considering
luminance, contrast, and structure. It ranges from -1 to 1, where 1 indicates perfect
similarity.
(Zﬂx,uy + Cl)(zaxy + C3)
(uz + p3 + C1)(0f + 0§ + C3)

SSIM(x,y) =

where u, and p,, are the average luminance of the two images being compared. 02 and
0'33 are the variances of the pixel intensities in the two images. dy,, is the covariance of

the pixel intensities between the two images. C; and C, are constants added to prevent
instability when the denominators are close to zero

3.2 Methods Evaluated

To perform the super-resolution experiments, we started from the classical interpolation
methods for image enhancement, which include nearest neighbor and bilinear
interpolation. We further extend our experiments with more advanced approaches,
including OpenCV and a deep learning-based method for image reconstruction.
Baseline Methods:

e Nearest Neighbour Upsampling
e Bilinear Upsampling
These two methods serve as baseline techniques for image super-resolution and are fast
but limited in reconstruction fidelity.
OpenCV DNN:
e EDSR (Enhanced Deep Residual Network)
e LapSRN (Laplacian Pyramid Super-Resolution Network)
Advance Deep Learning Methods:

We employed various deep learning-based super-resolution methods using our custom
settings, including the recent method.

14
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e Swin IR

e SwinlR L

e Struct SR

e Deep Fourier SR
e Face SR

3.3 Results and Evaluation

We evaluated the above-mentioned image enhancement method using two performance
measuring metrics: PSNR and SSIM. Table 4 compares the performance of these
methods.

Table 4: Performance Comparison of Various Super-Resolution Methods

Method PSNR (2x) SSIM(2x) PSNR(4x) SSIM(4x)
NN 39.348 0.958 34.167 0.904
Bilinear 40.692 0.968 35.436 0.931
ESDR - - 35.401 0.931
LapSRN - - 39.024 0.947
SwinIR 13.00 0.666 34.63 0.915
SwinlR_L - - 35.39 0.933
StructSR - - 19.08 0.763
DeepFourierSR 12.39 0.579 12.42 0.569
FaceSR - - 15.32 0.7074

Qualitative Results

To further evaluate the performance of image enhancement methods, we compare the
qualitative analysis in Table 5. This qualitative comparison presents visual comparisons
between the low-resolution input images (1x) and the reconstructed high-resolution
images (4x) using different deep learning algorithms including, FaceSR, EDSR, and
LapSRN. We choose three different samples of images with low resolution and input to
three different super-resolution enhancements methods to reconstruct high resolution
images. In contrast the low resolution input images, reconstructed images presents
enhanced perceptual quality and higher resolution, showing capacity for fine-detail signal
recovery. To conclude, these results demonstrate that deep learning-based super-
resolution methods can substantially improve image quality, thereby facilitating
improved feature extraction for more accurate rPPG signal estimation.

15
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Table 5: Qualitative comparison of low-resolution image (1x) and reconstructed super-
resolution image (4x). These images are taken from BP4D dataset [17].

Low Processed High Resolution Image (4x)
Resolution
Ir(liag)e FaceSR ESDR LapSRN
X

16

22/09/2025



. ) ) ) Deliverable D2.1 Preprocessing algorithms

I l Improving biomedical diagnosis

B E- I-I through light-based technologies
1 . and machine learning

The experimental results demonstrate that while classical interpolation methods provide
reasonable baseline performance, advanced deep learning-based approaches, particularly
LapSRN and SwinlR variants, achieve superior reconstruction quality in terms of both
PSNR and SSIM. Qualitative comparisons further confirm that these methods recover
finer details and improve perceptual quality, which is essential for accurate local PPG
signal estimation and lesion differentiation. Overall, super-resolution and deblurring with
deep learning form a crucial step towards high-quality multimodal data enhancement.

4 FUTURE WORK FOR D2.6

The super-resolution experiments reported in D2.1 form the foundation for enhancing
image quality in the multimodal database. In deliverable D2.6, this work will be extended
to develop a comprehensive Multimodal Database of Face and Skin Vascularization Maps
(M40). Future work will focus on robust rPPG estimation using multimodal imaging,
combining thermal, and RGB image data. This includes multimodal data collection,
advanced preprocessing techniques for image registration, noise filtration and feature
enhancement. Furthermore, design a custom DL model to capture both spatial and
temporal physiological signals using collected multimodal data. Together, these efforts
aim to enable accurate rPPG estimation from enhanced multimodal images, enabling
remote health monitoring such as rPPG signal estimation and facial skin analysis using
vascular maps.
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