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Abstract 
(for dissemination) 

Cardiovascular disease (CVD) is one of the leading causes of mortality 
worldwide, emphasizing the need for continuous, scalable and non-
invasive monitoring. Although traditional methods, such as ECG and 
PPG, are effective but have limitations because they require direct skin 
contact and are used in clinical settings. To address these challenges, 
we propose STREAM-Net, a dual-branch deep learning framework for 
remote photoplethysmography (rPPG), enabling contactless vital sign 
measurement through facial video analysis. Our approach incorporates 
preprocessing techniques and Monte Carlo dropout for physiological 
signal enhancement and uncertainty quantification to ensure robust and 
reliable predictions. Furthermore, we explore advanced image 
enhancement methods, including super-resolution and deblurring (e.g., 
ESDR, LapSRN, and FaceSR) to enhance signal recovery in both RGB 
and thermal imagery. Experimental results demonstrate that enhanced 
image quality significantly improves rPPG feature extraction. 

Keywords Cardiovascular disease, remote photoplethysmography (rPPG), super 
resolution, remote health monitoring, machine learning 
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EXECUTIVE SUMMARY 
Cardiovascular disease (CVD) is the leading global cause of mortality, emphasizing the 

need for continuous, scalable, and non-invasive monitoring. Although Traditional 

methods, such as ECG and PPG, are effective, but limited by their reliance on direct 

contact with skin and clinical settings. To address these limitations, we proposed 

STREAM-Net [14], a dual-branch deep learning framework for remote 

photoplethysmography (rPPG), which measures vital signs simply by analysing facial 

videos. This approach eliminates the need for physical contact or specialized equipment. 

Our proposed STREAM-Net employs a preprocessing pipeline, which incorporates 

resizing, face cropping, and temporal normalization to ensure robust spatio-temporal 

feature extraction. Additionally, we integrated a Monte Carlo dropout technique to 

quantify uncertainty in predictions to measure reliability and its applicability in clinical 

simulation. We further extend our research to investigate how advanced image 

enhancement methods, including super-resolution and noise removal, can enhance key 

rPPG-relevant features in both RGB and thermal imagery. This enhancement can lead to 

better recovery of physiological signals. Our comprehensive experiments on super-

resolution and deblurring demonstrate that advanced deep learning models (e.g., SwinIR, 

EDSR, LapSRN) substantially improve the quality of RGB and thermal images, 

facilitating improved recovery of physiological signal/feature. These developments 

promote accessible, contactless cardiovascular care by providing the foundation for 

practical uses in telemedicine, home monitoring, workplace safety, and public health.  

INTRODUCTION 
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality 

globally, affecting millions of people and exerting a substantial burden on global 

healthcare systems[1]. Physiological health directly relies on heart condition and requires 

continuous monitoring to detect early warning signs and prevent adverse events, such as 

stroke and arrhythmias. Traditional health monitoring methods, including 

electrocardiography (ECG) and photoplethysmography (PPG), require specialized 

equipment, clinical visits, and direct skin contact. These methods are expensive and 

impractical for long-term use. It requires direct clinical professional involvement and can 

be uncomfortable due to direct skin contact. These limitations introduced an obstacle to 

continuous cardiac monitoring for individuals requiring long-term surveillance, 

particularly elderly patients and those in remote areas[2]. 

In response to these limitations, remote photoplethysmography (rPPG) has emerged as an 

innovative technique that can extract cardiovascular data without requiring physical 

contact. Remote photoplethysmography (rPPG) [3] is a non-invasive technique that uses 

subtle changes in blood volume to determine physiological signals, including pulse rate 

(PR), pulse rate variability (PRV), and respiratory rate. Compared to traditional 

techniques such as ECG and PPG [4], which require direct contact with the skin, rPPG 

offers a more practical and comfortable monitoring option, using remote cameras/sensors 



 

Deliverable D2.1 Preprocessing algorithms 

 

  
 22/09/2025  

5 

to capture changes in light absorption and reflection caused by blood flow [5]. An 

increasing number of studies have been reported on remote rPPG in recent years, which 

utilize video or ordinary cameras to achieve non-contact remote detection of 

physiological signals[6]. 

The non-invasive nature of rPPG and seamless integration offer various practical 

applications, including healthcare, everyday life, and research. In the context of 

telemedicine, remote photoplethysmography (rPPG) enables medical professionals to 

assess patients' cardiovascular health during virtual consultations using a simple video 

call setup [7]. This functionality is particularly beneficial in emergency triage situations 

where rapid vital sign evaluation is critical, as well as in managing chronic illnesses and 

conducting routine checkups [8]. 

Another revolutionary application is home monitoring, which allows individuals to 

continuously check their cardiovascular health without needing any additional gadgets. 

While watching TV, using a computer, or going about their daily activities, people with 

chronic illnesses or elderly individuals living alone can all benefit from this seamless 

monitoring [9]. This ambient monitoring method not only provides doctors with 

comprehensive, long-term information about their patients' health but also removes 

barriers to compliance [10]. 

Incorporating rPPG technology in the workplace presents exclusive prospects for 

occupational health surveillance. The integration of rPPG technology in the workplace 

presents unprecedented potential for occupational health monitoring. It is possible to 

monitor workers in physically demanding jobs, high-stress workplaces, or safety-critical 

tasks for indications of exhaustion, stress, or cardiovascular discomfort without 

interfering with their work or forcing them to wear extra gear. This capability has the 

potential to transform workplace safety and wellness programs entirely [11]. 

Other potential use cases include applications related to security and public health. 

Airport screening systems could incorporate rPPG to identify individuals experiencing 

medical distress or elevated stress levels, enhancing biosecurity without physical contact 

[12]. Similarly, research applications in human-computer interaction, psychology, and 

behavioral studies hold another promising prospect. With rPPG, researchers can examine 

physiological correlates of different stimuli, stress reactions, and emotional responses in 

natural environments without the limitations imposed by wearable sensors.  This potential 

could improve our knowledge of human behavior, emotion control, and the physiological 

effects of different settings or interventions [13]. 

In conclusion, remote rPPG effectively addresses significant gaps in cardiovascular 

disease management by enabling contactless and scalable monitoring, particularly 

important given the increasing prevalence of these health issues. With advancements in 

machine learning, this technology could revolutionize preventative healthcare, allowing 

the tracking of vital signs as simple as facing a camera. 
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1 PREPROCESSING FOR STREAM-NET 

In the initial phase of the project, a dedicated preprocessing technique [Annex 1] was 

developed and implemented to prepare raw RGB face image sequences for input into the 

dual-branch deep learning model. These preprocessing steps are essential for ensuring 

that the spatio-temporal features extracted by the deep learning network are both accurate 

and reliable. This preprocessing pipeline is a vital part of the STREAM-Net framework, 

which was recently published in a Q1 journal [14]. 

The STREAM-Net model was trained and evaluated on the PURE [15] and UBFC [16] 

datasets, which are open-source RGB facial imaging data for physiological signal 

estimation. These datasets are collected under a controlled environment, including 

illumination and motion. 

1.1 Key Preprocessing Steps  

The preprocessing pipeline involved several steps, including image resizing, 

normalization, and face cropping. Below are details of these steps. 

• Input Resizing: The raw RGB image sequences were resized to a fixed spatial 

resolution of 144 ×  144 pixels. This uniformity in size reduces computational 

cost while ensuring consistent input shape across all samples. 

• Dual-Branch Input: STREAM-Net is a dual-branch architecture consisting of a 

spatial and temporal branch, each receiving a different pre-processed input. The 

spatial branch takes a downsampled raw frame c(t), while the temporal branch 

receives a normalized frame, calculated using the difference between two 

consecutive frames. 

The normalized frames are calculated as: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑟𝑎𝑚𝑒 (𝑡) =  
𝑐(𝑡 + 1) − 𝑐(𝑡)

𝑐(𝑡 + 1) + 𝑐(𝑡)
 

where 𝑐(𝑡) and 𝑐(𝑡 + 1) are consecutive raw frames in a sequence. 

This normalization emphasizes dynamic skin changes (e.g., due to blood flow), 

while reducing the influence of static visual content like lighting or skin tone. 

Normalized features are less sensitive to tiny changes in skin tone or illumination, 

Figure 1: Raw frames from the PURE dataset and the normalized R, G, and B frames. 
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which promotes better generalization across datasets. A raw frame and a 

normalized frame of two consecutive frames are shown in Figure 1.  

• Face Cropping: Before normalization, face cropping is applied to crop the region 

of interest (ROI) and discard background pixels that do not contribute to skin 

variation. 

This preprocessing pipeline ensures the input to STREAM-Net is both spatially and 

temporally consistent, with reduced susceptibility to nuisance variables such as 

illumination and skin tone. It enhances the model’s ability to extract robust features for 

downstream tasks like subtle variation on the skin surface due to blood pulsation. 

2 MC-DROPOUT FOR UNCERTAINTY ESTIMATION 

To quantify the uncertainty of the STREAM-Net, we employ the Monte Carlo dropout 

(MC-dropout) technique. The MC-Dropout method utilizes dropout during inference to 

estimate epistemic uncertainty. Dropout is a regularization technique used in deep neural 

networks to avoid overfitting problems. It randomly deactivates a subset of neurons from 

the learning process during the training phase. Figure 2 illustrates the role of dropout 

during the training and inference for both model configurations, including the standard 

model and the Monte Carlo dropout model for uncertainty estimation. 

Figure 2: Model configurations for deterministic model prediction and Monte Carlo 

dropout for uncertainty quantification. 
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2.1 Implementation  

To estimate the uncertainty of the STREAM-Net, we employed Monte Carlo (MC) 

dropout during the inference. This uncertainty analysis uses four different dropout 

configurations, including dropout rates of 0.1, 0.2, dropout div 2, and dropout div 3. 

Dropout div 2 and dropout div 3 denote that the original dropout used for training is 

divided by 2 and 3, respectively. 

During the inference, MC dropout randomly enables the dropout layers and performs 30 

predictions against a single input sample over 30 forward iterations. 

2.2 MC-Dropout Predictions and Visualization 

During the inference, MC dropout randomly enables the dropout layers and performs 30 

predictions against a single input sample over 30 forward iterations. Tables 1 and 2 

compare the quantitative analysis of the proposed standard model and the model with 

dropout enabled during inference. It is noticeable that the proposed model presents similar 

performance metrics using different dropout configurations, ensuring consistence 

performance. 

Table 1: Cross-dataset results, trained on PURE and tested on UBFC. Best results are 

shown in bold, and second-best results are underlined 

Table 2: Cross-dataset results, trained on UBFC and tested on PURE. The best results are 

highlighted in bold, while the second-best results are underlined 

Method MAE MAPE RMSE 𝜌 

PhyNet [18] 2.370 2.158 2.481 0.990 

DeepPhys [19] 1.213 1.421 2.902 0.990 

TS-CAN [20] 1.301 1.501 2.871 0.990 

EfficientPhys-C [21] 2.131 2.350 3.000 0.940 

PhysFormer [22] 1.440 1.660 3.770 0.980 

SpikingPhys [23] 2.801 2.810 - 0.830 

PhysMamba [24] 0.970 - 1.930 0.990 

FactorizePhys [25] 0.770 1.340 3.291 0.991 

STREAM-Net [14] 

(Standard Model) 
1.151 1.305 2.715 0.991 

Dropout 0.1 1.151 1.305 2.715 0.991 

Dropout 0.2 1.151 1.305 2.715 0.991 

Dropout/2 1.151 1.305 2.715 0.991 

Dropout/3 1.151 1.305 2.715 0.991 

Method MAE MAPE RMSE 𝜌 

PhyNet [18] 8.061 13.671 19.710 0.613 

DeepPhys [19] 5.541 5.320 18.511 0.661 
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TS-CAN [20] 3.690 3.390 13.801 0.820 

EfficientPhys-C [21] 5.471 5.401 17.041 0.710 

PhysFormer [22] 12.920 23.921 24.361 0.472 

SpikingPhys [23] 3.831 - 5.701 0.830 

PhysMamba [24] 1.20 - 5.990 0.970 

STREAM-Net [14] 

(Standard Model) 
1.318 1.384 5.314 0.997 

Dropout 0.1 1.318 1.384 5.314 0.997 

Dropout 0.2 1.318 1.384 5.314 0.997 

Dropout/2 1.318 1.384 5.314 0.997 

Dropout/3 1.318 1.384 5.314 0.997 

Dropout 0.9 10.189 10.463 22.612 0.389 

Figure 3: Monte Carlo dropout predictions and uncertainty analysis: The first plot presents 

30 Monte Carlo (MC) dropout predictions (dropout rate = 0.2), illustrating the model’s 

predictive uncertainty. The middle plot compares the mean MC prediction (blue) derived 

from MC, with the ground truth (red). The bottom plot depicts the variance across these 

predict ions,  quantify ing the model’s  uncertainty over t ime steps (0 -300) . 
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Figure 3 presents a visual analysis of the uncertainty in the model predictions. The first 

plot shows 30 Monte Carlo dropout predictions (dropout rate = 0.2), obtained during 30 

forward passes against one input sample. The middle plot compares the ground truth 

values (red) and the mean prediction (blue), obtained from Monte Carlo predictions. The 

variance of all 30 predictions is shown in the bottom plot, which measures the model’s 

uncertainty over time steps (0-300). Similarly, Figure 4 illustrates the model’s predictions 

under MC dropout with different dropout settings. A higher dropout rate (0.2) introduces 

higher prediction variance, while a lower dropout (Div 2 or Div 3) reduces the prediction 

variance and presents balanced stability and uncertainty [14]. 

 

In general, the predictions remain consistent across all dropout rates, reflecting the 

model’s ability to capture the underlying patterns of the data. The bottom subplot exhibits 

ground truth values for comparison. By comparing the MC dropout predictions with the 

ground truth, we can assess the model’s ability to generalize while incorporating 

uncertainty estimation. This analysis highlights the model’s robustness against different 

dropout rates and offers a method to quantify uncertainty in Bayesian deep learning 

Figure 4: Figure 4: Monte Carlo dropout predictions uncertainty: Effect of varying 

dropout rates on model outputs relative to ground truth. 
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scenarios. It is interesting to observe that there is no difference between the predictions 

of the standard model (no dropout during inference) and the predictions under different 

dropout rate configurations. This consistence performance supports the reliability of our 

model under stochastic conditions. As these performance metrics are indirectly computed 

via the Fast Fourier Transform (FFT), small variations in the predicted values of the signal 

due to different dropout rates are insignificant and the overall performance remains 

unaffected. However, to ensure our uncertainty estimation algorithm, we applied extreme 

conditions by setting the dropout rate to 0.9. We observed a remarkable decline in 

predictive accuracy when using these extreme dropout settings (Table 2, dropout 0.9). 

This experimental analysis ensures that MC-dropout works properly and STREAM-Net 

exhibits consistent performance across different dropout rates. 

 

In addition, Fig. 3 shows a visualization of these probabilistic predictions. The first plot 

in the figure depicts 30 forward passes on an input sample and the corresponding MC 

dropout prediction (with a dropout rate of 0.2). As can be seen from the figure, there are 

small variations in each of the predictions, but they are all consistent with the expected 

results, and there are no uncertain estimations. The second plot compared the mean of 

these probabilistic predictions with the ground truth. This implies that the MC-prediction 

Figure 5: MC dropout predictions: A magnified view of the highlighted region (index 

40 to 45) illustrating the variability in prediction results across different samples. 
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follows the data trend as the actual signal (ground truth). The last plot in Fig. 3 shows the 

uncertainty during these 30 inferences with randomly activated dropout layers. In general, 

the model uncertainty is low (0.05–0.015), indicating high confidence in the predictions. 

However, there are some instances where model exhibits higher uncertainty. For instance, 

the MC-dropout variance for data indices 100 and 210 is as high as 0.030. The complexity 

of the input data or the variability of the model predictions may lead to such a high 

uncertainty region. These fluctuations and spikes in uncertainty indicate that the model 

encounters varying degrees of uncertainty throughout the input data sequence.  

 

To further understand the variability introduced by the MC-Dropout, Figs. 5 and 6 provide 

a closer view of the MC-Dropout predictions, illustrating the predicted variability 

associated with the MC-Dropout over a smaller range.  

Table 3 provides the mean signal-to-noise ratio (SNR), mean variance and mean standard 

deviation of uncertainty to demonstrate the quantitative analysis using different dropout 

rates. These statistics reflect that higher the dropout rate, higher the uncertainty, and vice 

versa. For example, the mean, variance, and standard deviation for a dropout rate of 0.1 

Figure 6: MC dropout rate predictions: A zoomed-in view of the highlighted region 

(indices 70 to 110) comparing the variability in predictions for different dropout rates. 
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are 0.0049 and 0.002, respectively, whereas the higher the dropout rate (dropout = 0.2), 

the greater the uncertainty (mean variance = 0.0113, standard deviation = 0.0045). 

Overall, there is no significant difference in the uncertainty comparisons using different 

dropout settings compared to the standard model predictions. This validates the robust 

performance and adaptability of STREAM-Net under different input conditions. More 

details in published paper [14] and  in Annex 1 (GitHub repository). 

The MC-dropout experiments validates that STREAM-Net maintains consistent 

performance across different dropout configurations, with only extreme dropout (0.9) 

causing a decline in accuracy. This demonstrates the model’s robustness, reliability under 

stochastic conditions, and its ability to provide meaningful uncertainty estimates for 

probabilistic predictions. 

 

Table 3: Monte Carlo mean variance and standard deviation (Std) for uncertainty 

analysis. 

Method 
Mean SNR Mean Variance Variance Std. 

No Dropout 5.739 - - 

Dropout 0.1 5.775 0.0049 0.0022 

Dropout 0.2 5.812 0.0113 0.0045 

Dropout/2 5.800 0.0113 0.0037 

Dropout/3 5.768 0.0064 0.0021 

3 SUPER-RESOLUTION (SR) ALGORITHMS 

The objective of developing new super-resolution and deblurring deep learning (DL) 

algorithms is to enhance high-frequency details in thermal images and correct color 

distortions, key requirements for local photoplethysmography (PPG) and lesion 

differentiation. These experiments serve as a fundamental step towards high-quality 

multimodal data enhancement with high-frequency feature recovery and color correction 

for local PPG. 

3.1 Experimental details 

Input Data: 

• A subset of facial RGB and thermal images from the BP4D dataset [17] was used 

to conduct experiments related to image resolution enhancement. 

• Images were artificially subsampled by a factor of 2× and 4× using nearest 

neighbour (NN) interpolation to generate low-resolution images. 

Evaluation Metrics:  

To assess the reconstruction quality of the enhanced/upsampled images, the following 

two metrics were used. 
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• PSNR (Peak Signal-to-Noise Ratio):  

PSNR quantifies the ratio between the maximum possible pixel intensity and the 

mean square error (MSE) between the reference image 𝐼 (input image) and the 

reconstructed image 𝐼 (super-resolution). It is quantified in decibels (dB). The 

higher the PSNR, the better the image fidelity. 

𝑃𝑆𝑁𝑅 = 10 ∙ log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
) 

where 𝑀𝐴𝑋 is the maximum possible pixel value of the image, and 𝑀𝑆𝐸 =

 
1

𝑚𝑛
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐼(𝑖, 𝑗)]

2𝑛
𝑗=1

𝑚
𝑖=1 .  

 

• SSIM (Structural Similarity Index):  

SSIM measures the perceptual similarity between two images, considering 

luminance, contrast, and structure. It ranges from -1 to 1, where 1 indicates perfect 

similarity. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 

where 𝜇𝑥 and 𝜇𝑦 are the average luminance of the two images being compared. 𝜎𝑥
2 and 

𝜎𝑦
2 are the variances of the pixel intensities in the two images. 𝜎𝑥𝑦 is the covariance of 

the pixel intensities between the two images. 𝐶1 and 𝐶2 are constants added to prevent 

instability when the denominators are close to zero 

3.2 Methods Evaluated 

To perform the super-resolution experiments, we started from the classical interpolation 

methods for image enhancement, which include nearest neighbor and bilinear 

interpolation. We further extend our experiments with more advanced approaches, 

including OpenCV and a deep learning-based method for image reconstruction. 

Baseline Methods: 

• Nearest Neighbour Upsampling 

• Bilinear Upsampling 

These two methods serve as baseline techniques for image super-resolution and are fast 

but limited in reconstruction fidelity. 

OpenCV DNN: 

• EDSR (Enhanced Deep Residual Network) 

• LapSRN (Laplacian Pyramid Super-Resolution Network) 

Advance Deep Learning Methods: 

We employed various deep learning-based super-resolution methods using our custom 

settings, including the recent method. 
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• Swin IR 

• Swin IR_L 

• Struct SR 

• Deep Fourier SR 

• Face SR 

3.3 Results and Evaluation 

We evaluated the above-mentioned image enhancement method using two performance 

measuring metrics: PSNR and SSIM. Table 4 compares the performance of these 

methods. 

 

Table 4: Performance Comparison of Various Super-Resolution Methods 

Method PSNR (2x) SSIM(2x) PSNR(4x) SSIM(4x) 

NN 39.348 0.958 34.167 0.904 

Bilinear 40.692 0.968 35.436 0.931 

ESDR - - 35.401 0.931 

LapSRN - - 39.024 0.947 

SwinIR 13.00 0.666 34.63 0.915 

SwinIR_L - - 35.39 0.933 

StructSR - - 19.08 0.763 

DeepFourierSR 12.39 0.579 12.42 0.569 

FaceSR - - 15.32 0.7074 

 

Qualitative Results 

To further evaluate the performance of image enhancement methods, we compare the 

qualitative analysis in Table 5. This qualitative comparison presents visual comparisons 

between the low-resolution input images (1x) and the reconstructed high-resolution 

images (4x) using  different deep learning algorithms including, FaceSR, EDSR, and 

LapSRN. We choose three different samples of images with low resolution and input to 

three different super-resolution enhancements methods to reconstruct high resolution 

images. In contrast the low resolution input images, reconstructed images presents 

enhanced perceptual quality and higher resolution, showing capacity for fine-detail signal 

recovery. To conclude, these results demonstrate that deep learning-based super-

resolution methods can substantially improve image quality, thereby facilitating 

improved feature extraction for more accurate rPPG signal estimation. 
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Table 5: Qualitative comparison of low-resolution image (1x) and reconstructed super-

resolution image (4x). These images are taken from BP4D dataset [17]. 

Low 

Resolution 

Image 

(1x) 

Processed High Resolution Image (4x) 

FaceSR ESDR LapSRN 
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The experimental results demonstrate that while classical interpolation methods provide 

reasonable baseline performance, advanced deep learning-based approaches, particularly 

LapSRN and SwinIR variants, achieve superior reconstruction quality in terms of both 

PSNR and SSIM. Qualitative comparisons further confirm that these methods recover 

finer details and improve perceptual quality, which is essential for accurate local PPG 

signal estimation and lesion differentiation. Overall, super-resolution and deblurring with 

deep learning form a crucial step towards high-quality multimodal data enhancement. 

4 FUTURE WORK FOR D2.6 

The super-resolution experiments reported in D2.1 form the foundation for enhancing 

image quality in the multimodal database. In deliverable D2.6, this work will be extended 

to develop a comprehensive Multimodal Database of Face and Skin Vascularization Maps 

(M40). Future work will focus on robust rPPG estimation using multimodal imaging, 

combining thermal, and RGB image data. This includes multimodal data collection, 

advanced preprocessing techniques for image registration, noise filtration and feature 

enhancement. Furthermore, design a custom DL model to capture both spatial and 

temporal physiological signals using collected multimodal data. Together, these efforts 

aim to enable accurate rPPG estimation from enhanced multimodal images, enabling 

remote health monitoring such as rPPG signal estimation and facial skin analysis using 

vascular maps. 
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